Metric-affine gravity and Black holes

Sebastián Bahamonde

Postdoctoral Researcher at Tokyo Institute of Technology, Japan

CAS-JSPS workshop, Prague and Castle Třešť, 13/Dec/2022
JCAP 01 (2022) no.01, 011; JCAP 04 (2022) no.04, 011; and 2210.05998
Jointly with Jorge Gigante Valcarcel.
Overview of the Talk

1. Introduction to Metric-affine gravity
 - Why modified gravity?
 - Basic geometrical quantities

2. Metric-Affine gravity
 - Curvature, torsion and nonmetricity
 - Dynamics

3. MAG models with dynamical torsion and nonmetricity
 - Weyl part of nonmetricity
 - Axial symmetry in Weyl-Cartan geometry
 - Spherical symmetry with Shears and Weyl (complete nonmetricity)
General Relativity is based upon different assumptions that can be understood as the fulfilling of the Lovelock’s theorem. Some assumptions are:

- **Equivalence principle**
General Relativity is based upon different assumptions that can be understood as the fulfilling of the Lovelock’s theorem. Some assumptions are:

- **Equivalence principle**
- **General covariance**: Invariant under diffeomorphisms and Local Lorentz transformations.
General Relativity is based upon different assumptions that can be understood as the fulfilling of the Lovelock’s theorem. Some assumptions are:

- **Equivalence principle**
- **General covariance:** Invariant under diffeomorphisms and Local Lorentz transformations.
- **4-dimension**
General Relativity is based upon different assumptions that can be understood as the fulfilling of the *Lovelock’s theorem*. Some assumptions are:

- **Equivalence principle**
- **General covariance**: Invariant under diffeomorphisms and Local Lorentz transformations.
- **4-dimension**
- **2nd order derivatives**: Gravitational action contains only second derivatives.
General Relativity is based upon different assumptions that can be understood as the fulfilling of the **Lovelock’s theorem**. Some assumptions are:

- **Equivalence principle**
- **General covariance**: Invariant under diffeomorphisms and Local Lorentz transformations.
- **4-dimension**
- **2nd order derivatives**: Gravitational action contains only second derivatives.
- **Locality**
General Relativity is based upon different assumptions that can be understood as the fulfilling of the **Lovelock’s theorem**. Some assumptions are:

- **Equivalence principle**
- **General covariance**: Invariant under diffeomorphisms and Local Lorentz transformations.
- **4-dimension**
- **2nd order derivatives**: gravitational action contains only second derivatives.
- **Locality**
- **Riemannian geometry**: The connection is the Levi-Civita one.
Why modified gravity?

- GR is not compatible with quantum field theory;

- The cosmological constant Λ problem; Dark energy, dark matter.

- The H_0 tension: 5σ tension between current expansion rate H_0 using Planck data and direct model-independent measurements in the local universe;

- Big Bang singularity;

- What is really the inflaton?

- Strong gravity regime needs to be tested;

- A good way to understand GR is to modify it;
Why modified gravity?

- GR is not compatible with quantum field theory;
- The cosmological constant Λ problem; Dark energy, dark matter.
Why modified gravity?

- GR is not compatible with quantum field theory;
- The cosmological constant Λ problem; Dark energy, dark matter.
- **The H_0 tension:** 5σ tension between current expansion rate H_0 using Planck data and direct model-independent measurements in the local universe;
Why modified gravity?

- GR is not compatible with quantum field theory;
- The cosmological constant Λ problem; Dark energy, dark matter.
- **The H_0 tension:** 5σ tension between current expansion rate H_0 using Planck data and direct model-independent measurements in the local universe;
- Big Bang singularity;
Why modified gravity?

- GR is not compatible with quantum field theory;
- The cosmological constant Λ problem; Dark energy, dark matter.
- **The H_0 tension**: 5σ tension between current expansion rate H_0 using Planck data and direct model-independent measurements in the local universe;
- Big Bang singularity;
- What is really the inflaton?
GR is not compatible with quantum field theory;
The cosmological constant Λ problem; Dark energy, dark matter.

The H_0 tension: 5σ tension between current expansion rate H_0 using Planck data and direct model-independent measurements in the local universe;

Big Bang singularity;

What is really the inflaton?

Strong gravity regime needs to be tested;
Why modified gravity?

- GR is not compatible with quantum field theory;
- The cosmological constant Λ problem; Dark energy, dark matter.
- The H_0 tension: 5σ tension between current expansion rate H_0 using Planck data and direct model-independent measurements in the local universe;
- Big Bang singularity;
- What is really the inflaton?
- Strong gravity regime needs to be tested;
- A good way to understand GR is to modify it;
How to modify it?

Non-Riemannian geometry
- Metric-affine gravity
- Non-commutative geometry
- Einstein-Cartan
- Poincaré gauge gravity
- Teleparallel theories

Higher-order theories
- $f(R, \Theta)$ theories
- Conformal Weyl
- Lovelock theories

Other approaches
- Padmanabhan thermod.
- Holography
- Analogue gravity
- Entropic gravity
- Other approaches
- Quantization

Quantum gravity theories
- Horava-Lifschitz
- String theory
- Loop quantum gravity
- Asymptotic safety
- Supergravity
- Rainbow gravity

D-dimensional theories
- Braneworld
- Randall Sundrum
- DGP
- Kaluza-Klein
- EdGB gravity
- M-theory

Tensor-vector-scalar theories
- Einstein-Æther
- Proca theories
- Bimetric gravity
- Horndeski
- Beyond Horndeski
- Massive gravity

Figure: Classification of theories of gravity. (S. Bahamonde et.al., “Teleparallel Gravity: From Theory to Cosmology,” [arXiv:2106.13793 [gr-qc]].)
In the most general metric-affine setting, the fundamental variables are a metric $g_{\mu\nu}$ (10 comp.) as well as the coefficients $\tilde{\Gamma}^\rho_{\mu\nu}$ (64 comp.) of an affine connection.
In the most general metric-affine setting, the fundamental variables are a **metric** $g_{\mu\nu}$ (10 comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}_{\mu\nu}$ (64 comp.) of an **affine connection**.

The most general connection can be written as
In the most general metric-affine setting, the fundamental variables are a **metric** $g_{\mu\nu}$ (10 comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}_{\mu\nu}$ (64 comp.) of an **affine connection**.

The most general connection can be written as

Connection decomposition

\[
\tilde{\Gamma}^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\mu\nu} + \text{Torsion part} + \text{Nonmetricity part}
\]

\[
\tilde{R}^{\mu\nu\rho\sigma} = \partial_{\rho} \tilde{\Gamma}^{\lambda}_{\mu\nu\sigma} - \partial_{\sigma} \tilde{\Gamma}^{\lambda}_{\mu\nu\rho} + \tilde{\Gamma}^{\lambda}_{\mu\tau\rho} \tilde{\Gamma}^{\tau}_{\lambda\nu\sigma} - \tilde{\Gamma}^{\lambda}_{\mu\tau\sigma} \tilde{\Gamma}^{\tau}_{\lambda\nu\rho}
\]

\[
\tilde{T}^{\mu\nu\rho} = \tilde{\Gamma}^{\mu}_{\rho\nu} - \tilde{\Gamma}^{\mu}_{\nu\rho}
\]

\[
\tilde{Q}^{\mu\nu\rho} = \tilde{\nabla}^{\mu} g_{\nu\rho} = \partial^{\mu} g_{\nu\rho} - \tilde{\Gamma}^{\sigma}_{\nu\mu} g^{\rho}_{\sigma} - \tilde{\Gamma}^{\sigma}_{\rho\mu} g^{\nu}_{\sigma}
\]
Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables are a metric $g_{\mu\nu}$ (10 comp.) as well as the coefficients $\tilde{\Gamma}^\rho_{\mu\nu}$ (64 comp.) of an affine connection.

The most general connection can be written as

Connection decomposition

$$\tilde{\Gamma}^\lambda_{\mu\nu} = \left\{ \begin{array}{c} \text{Levi-Civita} \\ \Gamma^\lambda_{\mu\nu} \end{array} \right.$$
In the most general metric-affine setting, the fundamental variables are a **metric** $g_{\mu\nu}$ (10 comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}_{\mu\nu}$ (64 comp.) of an **affine connection**.

The most general connection can be written as

\[
\tilde{\Gamma}^\lambda_{\mu\nu} = \Gamma^\lambda_{\mu\nu} + \frac{1}{2} T^\lambda_{\mu\nu} - T_{(\mu}^\lambda_{\nu)}
\]
In the most general metric-affine setting, the fundamental variables are a **metric** $g_{\mu\nu}$ (10 comp.) as well as the coefficients $\tilde{\Gamma}^\rho_{\mu\nu}$ (64 comp.) of an **affine connection**.

The most general connection can be written as

Connection decomposition

\[
\tilde{\Gamma}^\lambda_{\mu\nu} = \Gamma^\lambda_{\mu\nu} + \frac{1}{2} T^\lambda_{\mu\nu} - T_{(\mu}^\lambda_{\nu)} + \frac{1}{2} Q^\lambda_{\mu\nu} - Q_{(\mu}^\lambda_{\nu)},
\]
In the most general metric-affine setting, the fundamental variables are a **metric** $g_{\mu\nu}$ (10 comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}_{\mu\nu}$ (64 comp.) of an **affine connection**.

The most general connection can be written as

\[\tilde{\Gamma}^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\mu\nu} + \frac{1}{2} T^{\lambda}_{\mu\nu} - T(\mu \lambda \nu) + \frac{1}{2} Q^{\lambda}_{\mu\nu} - Q(\mu \lambda \nu), \]

Connection decomposition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levi-Civita</td>
<td>$\Gamma^{\lambda}_{\mu\nu}$</td>
</tr>
<tr>
<td>Torsion part</td>
<td>$\frac{1}{2} T^{\lambda}_{\mu\nu} - T(\mu \lambda \nu)$</td>
</tr>
<tr>
<td>Nonmetricity part</td>
<td>$\frac{1}{2} Q^{\lambda}_{\mu\nu} - Q(\mu \lambda \nu)$</td>
</tr>
<tr>
<td>Curvature</td>
<td>$\tilde{R}^{\mu}{\nu\rho\sigma} = \partial{\rho} \tilde{\Gamma}^{\mu}{\nu\sigma} - \partial{\sigma} \tilde{\Gamma}^{\mu}{\nu\rho} + \tilde{\Gamma}^{\mu}{\tau\rho} \tilde{\Gamma}^{\tau}{\nu\sigma} - \tilde{\Gamma}^{\mu}{\tau\sigma} \tilde{\Gamma}^{\tau}_{\nu\rho}$</td>
</tr>
<tr>
<td>Torsion</td>
<td>$\tilde{T}^{\mu}{\nu\rho} = \tilde{\Gamma}^{\mu}{\rho\nu} - \tilde{\Gamma}^{\mu}_{\nu\rho}$</td>
</tr>
<tr>
<td>Nonmetricity</td>
<td>$\tilde{Q}{\mu\nu\rho} = \tilde{\nabla}{\mu} g_{\nu\rho} = \partial_{\mu} g_{\nu\rho} - \tilde{\Gamma}^{\sigma}{\nu\mu} g{\sigma\rho} - \tilde{\Gamma}^{\sigma}{\rho\mu} g{\nu\sigma}$</td>
</tr>
</tbody>
</table>
What does curvature geometrically represent?

Curvature tensor $\tilde{R}^\alpha_{\beta\mu\nu}$

Rotation experienced by a vector when it is parallel transported along a closed curve
What does torsion geometrically represent?

Torsion tensor $\tilde{T}^\alpha_{\mu\nu}$

non-closure of the parallelogram formed when two infinitesimal vectors are parallel transported along each other.
What does non-metricity geometrically represent?

Non-metricity tensor $\tilde{Q}_{\alpha\mu\nu}$ measures how much the length and angle of vectors change as we parallel transport them, so in metric spaces the length of vectors is conserve.
Figure: Classification of metric-affine geometries - Cube
Overview of the Talk

1. Introduction to Metric-affine gravity
 - Why modified gravity?
 - Basic geometrical quantities

2. Metric-Affine gravity
 - Curvature, torsion and nonmetricity
 - Dynamics

3. MAG models with dynamical torsion and nonmetricity
 - Weyl part of nonmetricity
 - Axial symmetry in Weyl-Cartan geometry
 - Spherical symmetry with Shears and Weyl (complete nonmetricity)
The curvature tensor of an affinely connected metric space-time contains corrections provided by the presence of torsion and nonmetricity: (∇_ν just Levi-Civita)

\[
\tilde{R}^\lambda_{\rho\mu\nu} = R^\lambda_{\rho\mu\nu} + \nabla_\mu N^\lambda_{\rho\nu} - \nabla_\nu N^\lambda_{\rho\mu} + N^\lambda_{\sigma\mu} N^\sigma_{\rho\nu} - N^\lambda_{\sigma\nu} N^\sigma_{\rho\mu},
\]

where

\[
N^\lambda_{\mu\nu} = \frac{1}{2} \left(T^\lambda_{\mu\nu} - T^\lambda_{\mu\nu} - T^\lambda_{\nu\mu} \right) + \frac{1}{2} \left(Q^\lambda_{\mu\nu} - Q^\lambda_{\mu\nu} - Q^\lambda_{\nu\mu} \right),
\]
The curvature tensor of an affinely connected metric space-time contains corrections provided by the presence of torsion and nonmetricity: (\nabla_\nu just Levi-Civita)

\[\tilde{R}^\lambda_{\rho\mu\nu} = R^\lambda_{\rho\mu\nu} + \nabla_\mu N^\lambda_{\rho\nu} - \nabla_\nu N^\lambda_{\rho\mu} + N^\lambda_{\sigma\mu} N^\sigma_{\rho\nu} - N^\lambda_{\sigma\nu} N^\sigma_{\rho\mu}, \]

where

\[N^\lambda_{\mu\nu} = \frac{1}{2} \left(T^\lambda_{\mu\nu} - T^\lambda_{\mu\nu} - T^\lambda_{\nu\mu} \right) + \frac{1}{2} \left(Q^\lambda_{\mu\nu} - Q^\lambda_{\mu\nu} - Q^\lambda_{\nu\mu} \right), \]

Furthermore, the latter also leads to the definition of three independent traces of this tensor, namely the Ricci and co-Ricci tensors:

\[\tilde{R}_{\mu\nu} = \tilde{R}^\lambda_{\mu\lambda\nu}, \quad \hat{R}_{\mu\nu} = \tilde{R}^\lambda_{\mu\nu\lambda}, \]

as well as the so-called homothetic curvature tensor \(\tilde{R}^\lambda_{\chi\mu\nu} \), which encodes the change of lengths of vectors provided by the trace part of nonmetricity under their parallel transport along closed loops.
Due to torsion, this connection introduces modifications in the covariant derivative which indeed involves a change on its commutation relations when considering an arbitrary vector v^λ:

$$[\tilde{\nabla}_\mu, \tilde{\nabla}_\nu] v^\lambda = \tilde{R}^\lambda_{\rho\mu\nu} v^\rho + T^\rho_{\mu\nu} \tilde{\nabla}_\rho v^\lambda.$$
Due to torsion, this connection introduces modifications in the covariant derivative which indeed involves a change on its commutation relations when considering an arbitrary vector v^λ:

$$[\tilde{\nabla}_\mu, \tilde{\nabla}_\nu] \, v^\lambda = \tilde{R}^\lambda{}_{\rho\mu\nu} \, v^\rho + T^\rho{}_{\mu\nu} \, \tilde{\nabla}_\rho v^\lambda.$$

The change of lengths of a given vector k^μ as well as the change of angles between two unit timelike vectors \hat{m}^μ and \hat{n}^μ, under a general parallel transport defined by a tangent vector V^μ, is proportional to the nonmetricity tensor:

$$V^\lambda \tilde{\nabla}_\lambda \|k\|^2 = V^\lambda Q_{\lambda\mu\nu} k^\mu k^\nu,$$

$$V^\lambda \tilde{\nabla}_\lambda \left(g_{\mu\nu} \hat{m}^\mu \hat{n}^\nu \right) = V^\lambda Q_{\lambda\mu\nu} \hat{m}^\mu \hat{n}^\nu - \frac{1}{2} V^\lambda Q_{\lambda\mu\nu} \left(\hat{m}^\mu \hat{m}^\nu + \hat{n}^\mu \hat{n}^\nu \right) \hat{m}^\rho \hat{n}_\rho.$$
Dynamics of metric-affine geometry

Gravitational action with dynamical torsion and nonmetricity:

\[S = \int d^4x \sqrt{-g} \left[\mathcal{L}_m - \frac{1}{16\pi} \mathcal{L}_g(\tilde{\mathcal{R}}, \mathcal{T}, Q) \right]. \]
Dynamics of metric-affine geometry

- Gravitational action with dynamical torsion and nonmetricity:

\[
S = \int d^4 x \sqrt{-g} \left[\mathcal{L}_m - \frac{1}{16\pi} L_g(\tilde{R}, T, Q) \right].
\]

- Correspondence between geometry and matter:

\[
\begin{align*}
\frac{\delta S_g}{\delta e^a_{\ \nu}} &= 16\pi \theta^\nu_a, \\
\frac{\delta S_g}{\delta \omega^a_{\ b\nu}} &= 16\pi \Delta_a^{\ b\nu}.
\end{align*}
\]

Here θ^ν_a is the energy-momentum tensor (canonical) and $\Delta_a^{\ b\nu}$ is the hypermomentum density tensor.
Dynamics of metric-affine geometry

- Gravitational action with dynamical torsion and nonmetricity:

\[S = \int d^4 x \sqrt{-g} \left[\mathcal{L}_m - \frac{1}{16\pi} \mathcal{L}_g(\tilde{R}, T, Q) \right]. \]

- Correspondence between geometry and matter:

\[\frac{\delta S_g}{\delta e^a_{\nu}} = 16\pi \theta_a^\nu, \]

\[\frac{\delta S_g}{\delta \omega^a_{b\nu}} = 16\pi \Delta_a^{b\nu}. \]

Here, \(\theta_a^\nu \) is the energy-momentum tensor (canonical) and \(\Delta_a^{b\nu} \) is the hypermomentum density tensor.

- \(GL(4, R) \) group allows the definition of a large number of scalar invariants depending on the aforementioned tensors.
Dynamics of metric-affine geometry

General quadratic gravitational action with dynamical torsion and nonmetricity:

\[S = \int d^4 x \sqrt{-g} \left\{ \mathcal{L}_m + \frac{1}{16\pi} \left[-\tilde{R} + a_1 \tilde{R}^2 + a_2 \tilde{R}_{\lambda\rho\mu\nu} \tilde{R}^{\lambda\rho\mu\nu} + a_3 \tilde{R}_{\lambda\rho\mu\nu} \tilde{R}^{\rho\lambda\mu\nu} \\
+ a_4 \tilde{R}_{\lambda\rho\mu\nu} \tilde{R}^{\mu\nu\rho} + a_5 \tilde{R}_{\lambda\rho\mu\nu} \tilde{R}^{\lambda\mu\rho\nu} + a_6 \tilde{R}_{\lambda\rho\mu\nu} \tilde{R}^{\mu\lambda\rho\nu} + a_7 \tilde{R}_{\rho\lambda\mu\nu} \tilde{R}^{\mu\lambda\rho\nu} \\
+ a_8 \tilde{R}_{\mu\nu\lambda} \tilde{R}^{\mu\nu\lambda} + a_9 \tilde{R}_{\mu\nu\lambda} \tilde{R}^{\nu\mu\lambda} + a_{10} \tilde{R}_{\mu\nu\lambda} \tilde{R}^{\mu\nu\lambda} + a_{11} \tilde{R}_{\mu\nu\lambda} \tilde{R}^{\nu\mu\lambda} + a_{12} \tilde{R}_{\mu\nu\lambda} \tilde{R}^{\mu\nu\lambda} \\
+ a_{13} \tilde{R}_{\mu\nu\lambda} \tilde{R}^{\nu\mu\lambda} + a_{14} \tilde{R}_{\lambda\mu\nu\rho} \tilde{R}^{\rho \lambda\mu\nu} + a_{15} \tilde{R}_{\lambda\mu\nu\rho} \tilde{R}^{\mu\rho\lambda\nu} + a_{16} \tilde{R}_{\lambda\mu\nu\rho} \tilde{R}^{\nu\mu\rho\lambda} + a_{17} \tilde{R}_{\lambda\mu\nu\rho} \tilde{R}^{\rho\lambda\mu\nu} \\
+ b_1 T_{\lambda\mu\nu} T^{\lambda\mu\nu} + b_2 T_{\lambda\mu\nu} T^{\mu\lambda\nu} + b_3 T_{\lambda\mu\nu} T^{\nu\mu\lambda} + c_1 T_{\lambda\mu\nu} Q^{\mu\lambda\nu} \\
+ c_2 T^{\lambda\mu\nu} Q_{\lambda\nu} t^{\mu} + c_3 T^{\lambda\mu\nu} Q_{\lambda\nu} t^{\mu} + d_1 Q_{\lambda\mu\nu} Q^{\lambda\mu\nu} + d_2 Q_{\lambda\mu\nu} Q^{\mu\lambda\nu} \\
+ d_3 Q^{\lambda\mu\nu} Q_{\lambda\mu\nu} + d_4 Q_{\lambda\mu\nu} Q^{\mu\lambda\nu} + d_5 Q^{\lambda\mu\nu} Q_{\lambda\mu\nu} \right\} \right\} . \]
Overview of the Talk

1. Introduction to Metric-affine gravity
 - Why modified gravity?
 - Basic geometrical quantities

2. Metric-Affine gravity
 - Curvature, torsion and nonmetricity
 - Dynamics

3. MAG models with dynamical torsion and nonmetricity
 - Weyl part of nonmetricity
 - Axial symmetry in Weyl-Cartan geometry
 - Spherical symmetry with Shears and Weyl (complete nonmetricity)
Nonmetricity can be decomposed in the Weyl part plus a "traceless" part:

\[Q_{\lambda \mu \nu} = g_{\mu \nu} W_{\lambda} + \mathcal{Q}_{\lambda \mu \nu}. \]

where \(W_{\mu} = \frac{1}{4} Q_{\mu \nu} \nu. \)
MAG models with dynamical torsion and nonmetricity (Weyl only)

- Nonmetricity can be decomposed in the Weyl part plus a "traceless" part:

\[Q_{\lambda\mu\nu} = g_{\mu\nu} W_{\lambda} + \mathcal{Q}_{\lambda\mu\nu}. \]

where \(W_{\mu} = \frac{1}{4} Q_{\mu\nu} \nu. \)

- Quadratic gravitational action with dynamical torsion and nonmetricity in Weyl-Cartan geometry (\(Q_{\lambda\mu\nu} = g_{\mu\nu} W_{\lambda} \) and \(\mathcal{Q}_{\lambda\mu\nu} = 0 \))

\[
S = \int d^4x \sqrt{-g} \left\{ \mathcal{L}_m + \frac{1}{64\pi} \left[-4R - 6d_1 \tilde{R}_{\lambda[\rho\mu\nu]} \tilde{R}^{\lambda[\rho\mu\nu]} \\
- 9d_1 \tilde{R}_{\lambda[\rho\mu\nu]} \tilde{R}_{\mu\nu}^{\lambda} + 8d_1 \tilde{R}_{[\mu\nu]} \tilde{R}^{\lambda} + \frac{1}{8} (32e_1 + 8e_2 + 17d_1) \tilde{R}^\lambda_{\lambda\mu\nu} \tilde{R}^\rho_{\rho\mu\nu} \\
- 7d_1 \tilde{R}_{[\mu\nu]} \tilde{R}^\lambda_{\lambda\mu\nu} + 3 (1 - 2a_2) T_{[\lambda\mu\nu]} T^{[\lambda\mu\nu]} \right] \right\}.
\]

1 S. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).
2 S. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
Nonmetricity can be decomposed in the Weyl part plus a "traceless" part:

\[Q_{\lambda\mu\nu} = g_{\mu\nu} W_{\lambda} + \mathcal{Q}_{\lambda\mu\nu} . \]

where \(W_{\mu} = \frac{1}{4} Q_{\mu\nu} \nu \).

Quadratic gravitational action with dynamical torsion and nonmetricity in Weyl-Cartan geometry (\(Q_{\lambda\mu\nu} = g_{\mu\nu} W_{\lambda} \) and \(\mathcal{Q}_{\lambda\mu\nu} = 0 \))

\[
S = \int d^4 x \sqrt{-g} \left\{ \mathcal{L}_m + \frac{1}{64\pi} \left[- 4R - 6d_1 \tilde{R}_{\lambda[\rho\mu\nu]} \tilde{R}^{\lambda[\rho\mu\nu]}
- 9d_1 \tilde{R}_{\lambda[\rho\mu\nu]} \tilde{R}^{\mu[\lambda\nu\rho]} + 8d_1 \tilde{R}_{[\mu\nu]} \tilde{R}^{[\mu\nu]} + \frac{1}{8} (32e_1 + 8e_2 + 17d_1) \tilde{R}^{\lambda} \lambda_{\mu\nu} \tilde{R}^\rho \rho^{\mu\nu}
- 7d_1 \tilde{R}_{[\mu\nu]} \tilde{R}^{\lambda} \lambda^{\mu\nu} + 3 (1 - 2a_2) T_{[\lambda\mu\nu]} T^{[\lambda\mu\nu]} \right] \right\} .
\]

Absence of a general Birkhoff’s theorem in MAG: new spherically and axially symmetric vacuum solutions with independent dynamical torsion and nonmetricity fields\(^1,2\)

\(^1\) S. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).
\(^2\) S. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
Spherical symmetry

- Metric, torsion and nonmetricity in spherically symmetric space-times ($\#2 + \#8 + \#2 = \#12$):

\[
\mathcal{L}_\xi g_{\mu\nu} = \mathcal{L}_\xi T^\lambda_{\mu\nu} = \mathcal{L}_\xi W_\mu = 0 \implies \mathcal{L}_\xi \tilde{R}_{\lambda\rho\mu\nu} = 0
\]

By solving these equations we find that torsion and nonmetricity behave as:

- Tetrads:
 - $T^t_{\text{tr}} = a(r)$
 - $T^r_{\text{tr}} = b(r)$
 - $T^\theta_{\text{tk}} = f(r)$
 - $T^\theta_{\text{kr}} = g(r)$

- Geometric coefficients:
 - $T^\theta_{\text{tk}} = e_{\alpha \theta}^k e^{\beta \theta \lambda} \epsilon^\beta_{\alpha \lambda} (r)$
 - $T^\theta_{\text{kr}} = e_{\alpha \theta}^k e^{\beta \theta \lambda} \epsilon^\beta_{\alpha \lambda} (r)$

- The metric is in the standard spherically symmetric form:

\[
ds^2 = \Psi_1(r) dt^2 - \Psi_2(r) dr^2 - r^2 d\theta_1^2 + \sin^2 \theta_1 d\theta_2^2
\]

Here, ϵ_{kl} is the Levi-Civita symbol in two dimensions.
Spherical symmetry

Metric, torsion and nonmetricity in spherically symmetric space-times ($\#2 + \#8 + \#2 = \#12$):

\[\mathcal{L}_\xi g_{\mu\nu} = \mathcal{L}_\xi T^\lambda_{\mu \nu} = \mathcal{L}_\xi W_\mu = 0 \implies \mathcal{L}_\xi \tilde{R}_{\lambda \rho \mu \nu} = 0 \]

By solving these equations we find that torsion and nonmetricity behave as

\[
\begin{align*}
T^t_{\ t r} &= a(r), \quad T^r_{\ t r} = b(r), \quad T^{\theta_k}_{\ t \theta_k} = f(r), \quad T^{\theta_k}_{\ r \theta_k} = g(r) \\
T^{\theta_k}_{\ t \theta_l} &= e^{a \theta_k} e^b_{\ \theta_l} \epsilon_{a b} d(r), \quad T^{\theta_k}_{\ r \theta_l} = e^{a \theta_k} e^b_{\ \theta_l} \epsilon_{a b} h(r), \\
T^t_{\ \theta_k \theta_l} &= \epsilon_{k l} k(r) \sin \theta_1, \quad T^r_{\ \theta_k \theta_l} = \epsilon_{k l} l(r) \sin \theta_1, \\
W_\lambda &= (w_1(r), w_2(r), 0, 0),
\end{align*}
\]

whereas the metric is in the standard spherically symmetric form:

\[
ds^2 = \Psi_1(r) \, dt^2 - \frac{d r^2}{\Psi_2(r)} - r^2 \left(d\theta_1^2 + \sin^2 \theta_1 \, d\theta_2^2 \right).
\]

Here, $\epsilon_{k l}$ is the Levi-Civita symbol in two dimensions.
The solution for the metric behaves as Reissner-Nordström

\[g_{tt} = -1/g_{rr} \equiv \Psi(r) = 1 - \frac{2m}{r} + \frac{d_1 \kappa_s^2 - 4e_1 \kappa_d^2}{r^2}. \]
Solution with dilations and spin

1. The solution for the metric behaves as Reissner-Nordström

\[g_{tt} = -1/g_{rr} \equiv \Psi(r) = 1 - \frac{2m}{r} + \frac{d_1 \kappa_s^2 - 4e_1 \kappa_{d,e}^2}{r^2}. \]

2. Nonmetricity sector:

\[W_\mu = \frac{\kappa_{d,e}}{r} \left(1, -\frac{1}{\Psi(r)}, 0, 0 \right). \]
The solution for the metric behaves as Reissner-Nordström

\[g_{tt} = -\frac{1}{g_{rr}} \equiv \Psi(r) = 1 - \frac{2m}{r} + \frac{d_1 \kappa_s^2 - 4 e_1 \kappa_{d,e}^2}{r^2}. \]

Nonmetricity sector:

\[W_\mu = \frac{\kappa_{d,e}}{r} (1, -1/\Psi(r), 0, 0). \]

Torsion sector:

\[\bar{S}^a = -\frac{\kappa_s}{r} (1, 1, 0, 0), \]

\[\bar{T}_{2}^{abc} = \frac{\kappa_s}{3r} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \end{pmatrix}. \]
What do these charges represent?

- **Torsion part:**

Intrinsic spin generates gravitation. This effect does not exist in GR.

We know that the spin is a fundamental property of particles. Since their masses contribute to gravity, why their spin do not?

The solution is in vacuum and a charge κ_s appears (spin charge). Analogue to the case of Schwarzschild where the mass M appears.

We expect that the spin charge might be important in certain astrophysical scenarios such as: highly magnetized neutron stars; supermassive black holes with endowed spin.
What do these charges represent?

- **Torsion part:**

 1. Intrinsic spin generates gravitation. This effect does not exist in GR.
What do these charges represent?

Torsion part:

1. Intrinsic spin generates gravitation. This effect does not exist in GR.

2. We know that the spin is a fundamental property of particles. Since their masses contribute to gravity, why their spin do not?
What do these charges represent?

Torsion part:

1. Intrinsic spin generates gravitation. This effect does not exist in GR.

2. We know that the spin is a fundamental property of particles. Since their masses contribute to gravity, why their spin do not?

3. The solution is in vacuum and a charge κ_s appears (spin charge). Analogue to the case of Schwarzschild where the mass M appears.
What do these charges represent?

- **Torsion part:**

 1. Intrinsic spin generates gravitation. This effect does not exist in GR.

 2. We know that the spin is a fundamental property of particles. Since their masses contribute to gravity, why their spin do not?

 3. The solution is in vacuum and a charge κ_s appears (spin charge). Analogue to the case of Schwarzschild where the mass M appears.

 4. We expect that the spin charge might be important in certain astrophysical scenarios such as: highly magnetized neutron stars; supermassive black holes with endowed spin.
What do these charges represent?

- Nonmetricity part - only Weyl:
What do these charges represent?

- **Nonmetricity part - only Weyl:**

 1. Intrinsic dilations generates gravitation. This effect does not exist in GR.
What do these charges represent?

Nonmetricity part - only Weyl:

1. Intrinsic dilations generates gravitation. This effect does not exist in GR.

2. Dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)
What do these charges represent?

Nonmetricity part - only Weyl:

1. Intrinsic dilations generates gravitation. This effect does not exist in GR.
2. Dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)
3. Weyl part of nonmetricity is "scale invariant"
Nonmetricity part - only Weyl:

1. Intrinsic dilations generates gravitation. This effect does not exist in GR.
2. Dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)
3. Weyl part of nonmetricity is "scale invariant"
4. Do all particles in nature have different dilations? is this property important in particle physics?
Extension to axisymmetric space-times

Metric, torsion and nonmetricity tensors in symmetric space-times:

\[\mathcal{L}_\xi g_{\mu\nu} = \mathcal{L}_\xi T^\lambda_{ \mu\nu} = \mathcal{L}_\xi Q^\lambda_{ \mu\nu} = 0 \implies \mathcal{L}_\xi \tilde{R}^\lambda_{ \rho\mu\nu} = 0. \]
Extension to axisymmetric space-times

- Metric, torsion and nonmetricity tensors in symmetric space-times:

\[\mathcal{L}_\xi g_{\mu\nu} = \mathcal{L}_\xi T^\lambda_{\mu\nu} = \mathcal{L}_\xi Q^\lambda_{\mu\nu} = 0 \implies \mathcal{L}_\xi \tilde{R}^\lambda_{\rho\mu\nu} = 0. \]

- Stationary and axisymmetric space-times:

\#10 \rightarrow \#4

\[ds^2 = \Psi_1(r, \vartheta) \, dt^2 - \frac{dr^2}{\Psi_2(r, \vartheta)} - r^2 \Psi_3(r, \vartheta) \left[d\vartheta^2 + \sin^2 \vartheta (d\varphi - \Psi_4(r, \vartheta) \, dt)^2 \right]; \]

\#24 \begin{cases} T^\lambda_{\mu\nu} = T^\lambda_{\mu\nu}(r, \vartheta) \\ W_\mu = (W_t(r, \vartheta), W_r(r, \vartheta), W_\vartheta(r, \vartheta), W_\varphi(r, \vartheta)) \end{cases}.

Sebastian Bahamonde (*)
Rotating Kerr-Newman metric structure\(^3\):

\[
\begin{align*}
 ds^2 &= \Psi(r, \vartheta) \, dt^2 - \frac{r^2 + a^2 \cos^2 \vartheta}{(r^2 + a^2 \cos^2 \vartheta) \Psi(r, \vartheta) + a^2 \sin^2 \vartheta} \, dr^2 \\
 &\quad - (r^2 + a^2 \cos^2 \vartheta) \, d\vartheta^2 + 2a \,(1 - \Psi(r, \vartheta)) \sin^2 \vartheta \, dt \, d\varphi \\
 &\quad - \sin^2 \vartheta \,[r^2 + a^2 + a^2 \,(1 - \Psi(r, \vartheta)) \sin^2 \vartheta] \, d\varphi^2,
\end{align*}
\]

\[
\Psi(r, \vartheta) = 1 - \frac{2mr + 4e_1(k_{d,e}^2 + k_{d,m}^2) - d_1 \kappa_s^2}{r^2 + a^2 \cos^2 \vartheta}.
\]

\(^3\)S. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
Rotating Kerr-Newman metric structure3:

$$ds^2 = \Psi(r, \vartheta) \, dt^2 - \frac{r^2 + a^2 \cos^2 \vartheta}{(r^2 + a^2 \cos^2 \vartheta) \, \Psi(r, \vartheta) + a^2 \sin^2 \vartheta} \, dr^2$$

$$- (r^2 + a^2 \cos^2 \vartheta) \, d\vartheta^2 + 2a \, (1 - \Psi(r, \vartheta)) \, \sin^2 \vartheta \, dt \, d\varphi$$

$$- \sin^2 \vartheta \left[r^2 + a^2 + a^2 \, (1 - \Psi(r, \vartheta)) \, \sin^2 \vartheta \right] \, d\varphi^2,$$

$$\Psi(r, \vartheta) = 1 - \frac{[2mr + 4(\kappa_{d,e}^2 + \kappa_{d,m}^2) - d_1 \kappa_s^2]}{r^2 + a^2 \cos^2 \vartheta}.$$

Field strength tensors:

$$\tilde{R}_{[\mu\nu]} = \frac{1}{12} \varepsilon^{\lambda} \sigma_{\mu\nu} \nabla_\lambda \tilde{S}^\sigma + \frac{1}{2} \nabla_\lambda t^\lambda_{\mu\nu}; \quad \tilde{R}^\lambda_{\lambda\mu\nu} = 4 \nabla_{[\nu} W_{\mu]};$$

$$\tilde{R}^\lambda_{[\mu\nu\rho]} = \frac{1}{6} \varepsilon^{\lambda} \sigma_{[\rho\nu} \nabla_{\mu]} \tilde{S}^\sigma + \nabla_{[\mu} t^\lambda_{\rho\nu]} + \frac{1}{4} \varepsilon^{\lambda} \omega_{[\rho} \tilde{t}^\sigma_{1\mu\nu]} \tilde{S}^\omega$$

$$- \frac{1}{18} \varepsilon_{\sigma\mu\nu\rho} \tilde{T}_{1}^\lambda \tilde{S}^\sigma.$$

3 S. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
Nonmetricity sector: (no approx.)

\[w_1(r, \vartheta) = \frac{\kappa_{d,e} r - a \kappa_{d,m} \cos \vartheta}{r^2 + a^2 \cos^2 \vartheta} , \quad w_3(r, \vartheta) = 0, \]

\[w_2(r, \vartheta) = -\frac{\kappa_{d,e} r}{(r^2 + a^2 \cos^2 \vartheta) \Psi(r, \vartheta) + a^2 \sin^2 \vartheta}, \]

\[w_4(r, \vartheta) = \kappa_{d,m} \left(\frac{r^2 + a^2}{r^2 + a^2 \cos^2 \vartheta} \cos \vartheta - \gamma \right) - a \frac{\kappa_{d,e} r \sin^2 \vartheta}{r^2 + a^2 \cos^2 \vartheta}. \]
Nonmetricity sector: (no approx.)

\[w_1(r, \vartheta) = \frac{\kappa_{d,e}r - a \kappa_{d,m} \cos \vartheta}{r^2 + a^2 \cos^2 \vartheta}, \quad w_3(r, \vartheta) = 0, \]

\[w_2(r, \vartheta) = -\frac{\kappa_{d,e}r}{(r^2 + a^2 \cos^2 \vartheta) \Psi(r, \vartheta) + a^2 \sin^2 \vartheta}, \]

\[w_4(r, \vartheta) = \kappa_{d,m} \left(\frac{r^2 + a^2}{r^2 + a^2 \cos^2 \vartheta} \cos \vartheta - \gamma \right) - a \frac{\kappa_{d,e}r \sin^2 \vartheta}{r^2 + a^2 \cos^2 \vartheta}. \]

Torsion sector (decoupling limit between the spin and the orbital angular momentum \(|a\kappa_S| \ll 1 \)):

\[\bar{S}^a = -\frac{\kappa_S}{r} (1, 1, 0, 0) + \mathcal{O}(a\kappa_S), \]

\[\bar{T}_{abc}^{2} = \frac{\kappa_S}{3r} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 \end{pmatrix} + \mathcal{O}(a\kappa_S). \]
Gravitational spin-orbit interaction

We found a solution in the decoupling limit $a\kappa_s \ll 1$, which ensures that the Maxwell equation and closure conditions are fulfilled by the field strength tensors of torsion

$$\nabla_\lambda \tilde{R}^\lambda_{[\rho\mu\nu]} = \nabla_\mu \tilde{R}^{[\mu\nu]} = 0, \quad \nabla_{[\sigma} \tilde{R}_{\lambda[\rho\mu\nu]} = \nabla_{[\lambda} \tilde{R}_{[\mu\nu]} = 0.$$
We found a solution in the decoupling limit $a\kappa_s \ll 1$, which ensures that the Maxwell equation and closure conditions are fulfilled by the field strength tensors of torsion

$$\nabla_\lambda \tilde{R}^\lambda_{[\rho\mu\nu]} = \nabla_\mu \tilde{R}^{[\mu\nu]} = 0, \quad \nabla_{[\sigma} \tilde{R}_{\lambda]\rho\mu\nu] = \nabla_{[\lambda} \tilde{R}_{\mu\nu]} = 0.$$
Gravitational spin-orbit interaction

- We found a solution in the decoupling limit \(a \kappa_s \ll 1 \), which ensures that the Maxwell equation and closure conditions are fulfilled by the field strength tensors of torsion

\[
\nabla_\lambda \tilde{R}^\lambda_{[\rho\mu\nu]} = \nabla_\mu \tilde{R}^{[\mu\nu]} = 0, \quad \nabla_\sigma \tilde{R}_\lambda^{[\rho\mu\nu]} = \nabla_\lambda \tilde{R}^{[\mu\nu]} = 0.
\]

Possible new effects in the decoupling limit

The dynamics of torsion and nonmetricity alters the geometry of the space-time
Gravitational spin-orbit interaction

- We found a solution in the decoupling limit $a\kappa_s \ll 1$, which ensures that the Maxwell equation and closure conditions are fulfilled by the field strength tensors of torsion

\[\nabla_\lambda \tilde{R}^\lambda_{[\rho\mu\nu]} = \nabla_\mu \tilde{R}^{[\mu\nu]} = 0, \quad \nabla_\sigma \tilde{R}^{\lambda[\rho\mu\nu]} = \nabla_\lambda \tilde{R}^{[\mu\nu]} = 0. \]

Possible new effects in the decoupling limit

The dynamics of torsion and nonmetricity alters the geometry of the space-time \Rightarrow
Gravitational spin-orbit interaction

We found a solution in the decoupling limit \(\alpha \kappa_s \ll 1 \), which ensures that the Maxwell equation and closure conditions are fulfilled by the field strength tensors of torsion

\[
\nabla_\lambda \tilde{R}^\lambda_{[\rho\mu\nu]} = \nabla_\mu \tilde{R}^{[\mu\nu]} = 0, \quad \nabla[\sigma \tilde{R}_\lambda_{[\rho\mu\nu]}] = \nabla[\lambda \tilde{R}_{[\mu\nu]}] = 0.
\]

Possible new effects in the decoupling limit

The dynamics of torsion and nonmetricity alters the geometry of the space-time \(\implies \) Additional modifications provided by a strong coupling between the orbital and the spin angular.
Gravitational spin-orbit interaction

We found a solution in the decoupling limit $a\kappa_s \ll 1$, which ensures that the Maxwell equation and closure conditions are fulfilled by the field strength tensors of torsion

$$\nabla_\lambda \tilde{R}^\lambda_{\rho\mu\nu} = \nabla_\mu \tilde{R}^{\mu\nu} = 0, \quad \nabla_\sigma \tilde{R}_\lambda^{\rho\mu\nu} = \nabla_\lambda \tilde{R}^{\mu\nu} = 0.$$

Possible new effects in the decoupling limit

The dynamics of torsion and nonmetricity alters the geometry of the space-time \implies Additional modifications provided by a strong coupling between the orbital and the spin angular.
Gravitational spin-orbit interaction

- We found a solution in the decoupling limit \(a\kappa_s \ll 1 \), which ensures that the Maxwell equation and closure conditions are fulfilled by the field strength tensors of torsion

\[
\nabla_\lambda \tilde{R}^\lambda_{[\rho\mu\nu]} = \nabla_\mu \tilde{R}^{[\mu\nu]} = 0, \quad \nabla_{[\sigma} \tilde{R}_{\lambda[\rho\mu\nu]} = \nabla_{[\lambda} \tilde{R}_{\mu\nu]} = 0.
\n
Possible new effects in the decoupling limit

The dynamics of torsion and nonmetricity alters the geometry of the space-time \(\Rightarrow \) Additional modifications provided by a strong coupling between the orbital and the spin angular.

- Gravitational spin-orbit interaction:

\[
\mathcal{H}_{LS} = \frac{1}{m^2_e r} \frac{\partial V}{\partial r} \mathbf{L} \cdot \mathbf{S} \approx \frac{d_1}{2r} \frac{\partial g_{tt}}{\partial r} a\kappa_s \cos \vartheta
\]
It is well known that the most general axisymmetric system in vacuum that can describe a BH type D in GR contains:\footnote{J. F. Plebanski and M. Demianski, Annals Phys. 98 (1976), 98-127}

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>M</td>
</tr>
<tr>
<td>Angular momentum</td>
<td>a</td>
</tr>
<tr>
<td>Taub-NUT charge</td>
<td>l</td>
</tr>
<tr>
<td>Acceleration</td>
<td>α</td>
</tr>
</tbody>
</table>
It is well known that the most general axisymmetric system in vacuum that can describe a BH type D in GR contains\(^4\):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>(M)</td>
</tr>
<tr>
<td>Angular momentum</td>
<td>(a)</td>
</tr>
<tr>
<td>Taub-NUT charge</td>
<td>(l)</td>
</tr>
<tr>
<td>Acceleration</td>
<td>(\alpha)</td>
</tr>
</tbody>
</table>

Further, one can add a cosmological constant \(\Lambda\) and a electric charge \(q_e\) and magnetic charge \(q_m\).

\(^4\)J. F. Plebanski and M. Demianski, Annals Phys. 98 (1976), 98-127
It is well known that the most general axisymmetric system in vacuum that can describe a BH type D in GR contains:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>M</td>
</tr>
<tr>
<td>Angular momentum</td>
<td>a</td>
</tr>
<tr>
<td>Taub-NUT charge</td>
<td>l</td>
</tr>
<tr>
<td>Acceleration</td>
<td>α</td>
</tr>
</tbody>
</table>

Further, one can add a cosmological constant Λ and a electric charge q_e and magnetic charge q_m.

The solution in GR is called Plebanski-Damianski solution.

4 J. F. Plebanski and M. Demianski, Annals Phys. 98 (1976), 98-127
The Plebanski-Damianski metric was recently presented in an improved form with $\Lambda = 0$ in by Podolský and Vrátný (Phys. Rev. D 104 (2021), 084078), and it can be written as

$$ds^2 = \Omega^{-2}(r, \vartheta) \left\{ \Phi_1(r, \vartheta) \left[dt - (a \sin^2 \vartheta + 2l(\chi - \cos \vartheta)) \, d\varphi \right]^2 - \frac{dr^2}{\Phi_1(r, \vartheta)} - \frac{d\vartheta^2}{\Phi_2(r, \vartheta) \sin^2 \vartheta} \left[a \, dt - (r^2 + a^2 + l^2 + 2\chi a l) \, d\varphi \right]^2 \right\}.$$

where Φ_i, Ω are cumbersome functions depending on these parameters.

The Plebanski-Damianski metric was recently presented in an improved form with $\Lambda = 0$ in by Podolský and Vrátný (Phys. Rev. D 104 (2021), 084078), and it can be written as

$$\begin{align*}
ds^2 &= \Omega^{-2}(r, \vartheta) \left\{ \Phi_1(r, \vartheta) \left[dt - \left(a \sin^2 \vartheta + 2l(\chi - \cos \vartheta) \right) d\varphi \right]^2 - \frac{dr^2}{\Phi_1(r, \vartheta)} \\
&\quad - \frac{d\vartheta^2}{\Phi_2(r, \vartheta)} - \Phi_2(r, \vartheta) \sin^2 \vartheta \left[a dt - (r^2 + a^2 + l^2 + 2\chi al) d\varphi \right]^2 \right\}.
\end{align*}$$

where Φ_i, Ω are cumbersome functions depending on these parameters.

We just found this new form with the cosmological constant5 with

$$\begin{align*}
\Phi_1(r, \vartheta) &= \frac{Q(r)}{\rho^2(r, \vartheta)}, \quad \Phi_2(r, \vartheta) = \frac{P(\vartheta)}{\rho^2(r, \vartheta)}, \text{ and} \\
\rho^2(r, \vartheta) &= r^2 + (a \cos \vartheta + l)^2. \text{ Here, } Q(r), \Omega(\vartheta) \text{ include the PD quantities.}
\end{align*}$$

We found a solution to OUR THEORY in the decoupling limit $|x_i \kappa_s| \ll 1$ with $x = (a, l, \alpha)$ with additional torsion and nonmetricity terms.
We found a solution to **OUR THEORY** in the decoupling limit $|x_i \kappa_s| \ll 1$ with $x = (a, l, \alpha)$ with additional torsion and nonmetricity terms.
We found a solution to **OUR THEORY** in the decoupling limit $|x_i \kappa_s| \ll 1$ with $x = (a, l, \alpha)$ with additional torsion and nonmetricity terms

$$w_1(r, \vartheta) = \frac{\kappa_{d,e} r - \kappa_{d,m} (a \cos \vartheta + l)}{r^2 + (a \cos \vartheta + l)^2}, \quad w_2(r, \vartheta) = -\frac{\kappa_{d,e} r - \kappa_{d,m} (a \gamma + l)}{Q(r)},$$

$$w_3(r, \vartheta) = -\kappa_{d,m} \sqrt{K(\vartheta) - \left(\frac{\cot \vartheta - \gamma \csc \vartheta}{P(\vartheta)}\right)^2},$$

$$w_4(r, \vartheta) = \kappa_{d,m} \left[\frac{(r^2 + a^2 - l^2) \cos \vartheta + al \sin^2 \vartheta + 2\chi l (a \cos \vartheta + l)}{r^2 + (a \cos \vartheta + l)^2} - \gamma \right] - \frac{\kappa_{d,e} r [a \sin^2 \vartheta + 2l (\chi - \cos \vartheta)]}{r^2 + (a \cos \vartheta + l)^2},$$

$$\bar{T}^\vartheta \varphi_t = -\bar{T}^\varphi \varphi_t \sin^2 \vartheta = -\bar{T}^\vartheta \varphi_r \frac{Q(r)}{\rho^2(r, \vartheta)} = \bar{T}^\varphi \varphi_r \frac{Q(r)}{\rho^2(r, \vartheta)} \sin^2 \vartheta = \frac{\kappa_s \sin \vartheta}{r} + O(x_i \kappa_s).$$

Similarly as electromagnetism, the torsion behaves as a Coulomb-like quantity depending on a spin charge κ_s and the non-metricity on the dilation charge κ_d.
Nonmetricity can be decomposed in the Weyl part plus a "traceless" part:

\[Q_{\lambda\mu\nu} = g_{\mu\nu} W_{\lambda} + \mathcal{Q}_{\lambda\mu\nu} . \]

where

\[W_\mu = \frac{1}{4} Q_{\mu\nu} \nu , \]

\[\mathcal{Q}_{\lambda\mu\nu} = g_{\lambda(\mu} \Lambda_{\nu)} - \frac{1}{4} g_{\mu\nu} \Lambda_{\lambda} + \frac{1}{3} \varepsilon_{\lambda\rho\sigma(\mu} \Omega_{\nu)} \rho\sigma + q_{\lambda\mu\nu} , \]
Nonmetricity decomposition

Nonmetricity can be decomposed in the Weyl part plus a "traceless" part:

\[Q_{\lambda \mu \nu} = g_{\mu \nu} W_{\lambda} + \mathcal{Q}_{\lambda \mu \nu}. \]

where

\[
W_{\mu} = \frac{1}{4} Q_{\mu \nu}^\nu, \\
\mathcal{Q}_{\lambda \mu \nu} = g_{\lambda (\mu} \Lambda_{\nu)} - \frac{1}{4} g_{\mu \nu} \Lambda_{\lambda} + \frac{1}{3} \varepsilon_{\lambda \rho \sigma (\mu} \Omega_{\nu)}^{\rho \sigma} + q_{\lambda \mu \nu},
\]

We defined a vector, and two traceless and pseudotraceless tensors

\[
\Lambda_{\mu} = \frac{4}{9} (Q_{\nu}^{\mu \nu} - W_{\mu}), \\
\Omega_{\lambda}^{\mu \nu} = - \left[\varepsilon^{\mu \nu \rho \sigma} Q_{\rho \sigma \lambda} + \varepsilon^{\mu \nu \rho} \lambda \left(\frac{3}{4} \Lambda_{\rho} - W_{\rho} \right) \right], \\
q_{\lambda \mu \nu} = Q_{(\lambda \mu \nu)} - g_{(\mu \nu} W_{\lambda)} - \frac{3}{4} g_{(\mu \nu \Lambda \lambda)},
\]
If this quantity is different to zero, when we parallel transport a vector, not only its norm changes but also its angle.
If this quantity is different to zero, when we parallel transport a vector, not only its norm changes but also its angle.

It is invariant under shears transformations.
If this quantity is different to zero, when we parallel transport a vector, not only its norm changes but also its angle.

It is invariant under shears transformations.

Shears: Deformations without changing the volume.
The traceless part of nonmetricity and shears

- If this quantity is different to zero, when we parallel transport a vector, not only its norm changes but also its angle.

- It is invariant under shears transformations.

- Shears: Deformations without changing the volume.

- Up to now, there are not exact solutions with shears in MAG.
MAG theory with shears

Let us first consider a simple model where torsion is not propagating and the traceless part of nonmetricity is dynamical:

\[
S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[-R + 2f_1 \tilde{R}_{(\lambda\rho)\mu\nu} \tilde{R}^{(\lambda\rho)\mu\nu} \\
+ 2f_2 \left(\tilde{R}_{(\mu\nu)} - \hat{R}_{(\mu\nu)} \right) \left(\tilde{R}^{(\mu\nu)} - \hat{R}^{(\mu\nu)} \right) \right],
\]
MAG theory with shears

Let us first consider a simple model where torsion is not propagating and the traceless part of nonmetricity is dynamical:

\[
S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[-R + 2f_1 \tilde{R}(\lambda\rho)_{\mu\nu} \tilde{R}^{(\lambda\rho)\mu\nu} \\
+ 2f_2 \left(\tilde{R}(\mu\nu) - \hat{R}(\mu\nu) \right) \left(\tilde{R}^{(\mu\nu)} - \hat{R}^{(\mu\nu)} \right) \right],
\]

As can be seen, the propagation of the nonmetricity field described in the action is carried out by the symmetric part of the curvature tensor and its symmetric contraction:

\[
\tilde{R}^{(\lambda\rho)}_{\mu\nu} = \tilde{\nabla}_{[\nu} Q_{\mu]} \lambda^\rho + \frac{1}{2} T^\sigma_{\mu\nu} Q_\sigma \lambda^\rho,
\]

\[
\tilde{R}(\mu\nu) - \hat{R}(\mu\nu) = \tilde{\nabla}_{(\mu} Q^{\lambda}_{\nu)} \lambda - \tilde{\nabla}_{\lambda} Q_{(\mu\nu)} \lambda - Q^{\lambda\rho}_{\mu\nu} Q^{\rho}_{(\mu\nu)} + Q_{\lambda\rho(\mu} Q^{\lambda\rho}_{\nu)} + T_{\lambda\rho(\mu} Q^{\lambda\rho}_{\nu)},
\]

which in turn constitute deviations from the third Bianchi of GR.
As can be seen, the propagation of the nonmetricity field described in the action is carried out by the symmetric part of the curvature tensor and its symmetric contraction:

\[
\tilde{R}^{(\lambda\rho)}_{\mu\nu} = \tilde{\nabla}_{[\nu Q_{\mu}] \lambda}^{\lambda} + \frac{1}{2} T_{\sigma \mu\nu} Q_{\sigma}^{\lambda} \rho ,
\]

\[
\tilde{R}_{(\mu\nu)} - \hat{R}_{(\mu\nu)} = \tilde{\nabla}_{(\mu Q_{(\lambda \nu)} \lambda)}^{\lambda} - \tilde{\nabla}_{\lambda Q_{(\mu\nu)} \rho}^{\lambda} \rho Q_{(\mu\nu)}^{\lambda} \rho + Q_{\rho (\mu Q_{\nu})}^{\lambda} \rho + T_{\lambda\rho (\mu Q_{\nu})}^{\lambda} \rho ,
\]

which in turn constitute deviations from the third Bianchi of GR.
Spherical symmetry with nonmetricity and torsion

Metric, torsion and nonmetricity in spherically symmetric space-times ($\#2 + \#8 + \#12 = \#22$):

\[\mathcal{L}_\xi g_{\mu\nu} = \mathcal{L}_\xi T^\lambda_{\mu\nu} = \mathcal{L}_\xi Q_\alpha_{\mu\nu} = 0 \implies \mathcal{L}_\xi \tilde{R}_\lambda^\rho_{\mu\nu} = 0 \]
Spherical symmetry with nonmetricity and torsion

- Metric, torsion and nonmetricity in spherically symmetric space-times ($\#2 + \#8 + \#12 = \#22$):

$$\mathcal{L}_\xi g_{\mu\nu} = \mathcal{L}_\xi T^\lambda_{\mu\nu} = \mathcal{L}_\xi Q_{\alpha\mu\nu} = 0 \implies \mathcal{L}_\xi \tilde{R}_{\lambda\rho\mu\nu} = 0$$

- Nonmetricity now contains all the 12 dof:

$$Q_{ttt} = q_1(r), \quad Q_{trr} = q_2(r), \quad Q_{ttr} = q_3(r),$$
$$Q_{tv\vartheta} = Q_{t\varphi\varphi} \csc^2 \vartheta = q_4(r), \quad Q_{rtt} = q_5(r), \quad Q_{rrr} = q_6(r),$$
$$Q_{rtr} = q_7(r), \quad Q_{r\vartheta\vartheta} = Q_{r\varphi\varphi} \csc^2 \vartheta = q_8(r),$$
$$Q_{\vartheta t\vartheta} = Q_{\varphi t\varphi} \csc^2 \vartheta = q_9(r), \quad Q_{\vartheta r\vartheta} = Q_{\varphi r\varphi} \csc^2 \vartheta = q_{10}(r),$$
$$Q_{\vartheta t\varphi} = -Q_{\varphi t\vartheta} = q_{11}(r) \sin \vartheta, \quad Q_{\vartheta r\varphi} = -Q_{\varphi r\vartheta} = q_{12}(r) \sin \vartheta,$$

whereas the metric and torsion are the same as before.
How to find a solution with all of these dof?

- We are only interested in the traceless part of $Q_{\alpha\mu\nu}$ (containing shears), so that:

We eliminate the Weyl part of nonmetricity $W_{\mu} = \frac{1}{4} Q_{\mu\nu\nu} = 0$ by setting

$$q_1(r) = \Psi_1(r)$$

$$q_2(r) = \Psi_2(r) + 2 q_4(r) r_2$$

We imposed $N[\lambda\rho]_{\mu} = 0$ which is equivalent to $T_{\lambda\mu\nu} = Q[\mu\nu]_{\lambda}$:

Shear transformations in the general linear group involves the part of the anholonomic connection describing a shear current or charge to take values in the symmetric traceless part of the Lie algebra.

- We demand the corresponding torsion and nonmetricity scalars of the solution to be regular.

After following these three steps we end up with 2 dof (metric) + 5 dof (torsion/nonmetricity) which is only 7 dof.
How to find a solution with all of these dof?

- We are only interested in the traceless part of $Q_{\alpha\mu\nu}$ (containing shears), so that:
 1. We eliminate the Weyl part of nonmetricity $W_\mu = \frac{1}{4} Q_{\mu\nu} \nu = 0$ by setting

 \[
 q_1(r) = \frac{\Psi_1(r)}{r^2} \left(r^2 q_2(r) \Psi_2(r) + 2q_4(r) \right), \\
 q_5(r) = \frac{\Psi_1(r)}{r^2} \left(r^2 q_6(r) \Psi_2(r) + 2q_8(r) \right).
 \]
How to find a solution with all of these dof?

We are only interested in the traceless part of $Q_{\alpha \mu \nu}$ (containing shears), so that:

1. We eliminate the Weyl part of nonmetricity $W_\mu = \frac{1}{4} Q_{\mu \nu} \nu = 0$ by setting

$$q_1(r) = \frac{\Psi_1(r)}{r^2} \left(r^2 q_2(r) \Psi_2(r) + 2q_4(r) \right),$$

$$q_5(r) = \frac{\Psi_1(r)}{r^2} \left(r^2 q_6(r) \Psi_2(r) + 2q_8(r) \right).$$

2. We imposed $N_{[\lambda \rho] \mu} = 0$ which is equivalent to $T_{\lambda \mu \nu} = Q_{[\mu \nu] \lambda}$:

→ Shear transformations in the general linear group involves the part of the anholonomic connection describing a shear current or charge to take values in the **symmetric traceless part** of the Lie algebra.
How to find a solution with all of these dof?

1. We are only interested in the traceless part of $Q_{\alpha\mu\nu}$ (containing shears), so that:

 - We eliminate the Weyl part of nonmetricity $W_\mu = \frac{1}{4} Q_{\mu\nu} \nu = 0$ by setting

 \[
 q_1(r) = \frac{\Psi_1(r)}{r^2} \left(r^2 q_2(r) \Psi_2(r) + 2q_4(r) \right),
 \]
 \[
 q_5(r) = \frac{\Psi_1(r)}{r^2} \left(r^2 q_6(r) \Psi_2(r) + 2q_8(r) \right).
 \]

2. We imposed $N_{[\lambda\rho]\mu} = 0$ which is equivalent to $T_{\lambda\mu\nu} = Q_{[\mu\nu]\lambda}$:

 → Shear transformations in the general linear group involves the part of the anholonomic connection describing a shear current or charge to take values in the symmetric traceless part of the Lie algebra.

3. We demand the corresponding torsion and nonmetricity scalars of the solution to be regular.
How to find a solution with all of these dof?

- We are only interested in the traceless part of $Q_{\alpha\mu\nu}$ (containing shears), so that:
 1. We eliminate the Weyl part of nonmetricity $W_\mu = \frac{1}{4} Q_{\mu\nu} \nu = 0$ by setting
 \[q_1(r) = \frac{\Psi_1(r)}{r^2} \left(r^2 q_2(r) \Psi_2(r) + 2q_4(r) \right), \]
 \[q_5(r) = \frac{\Psi_1(r)}{r^2} \left(r^2 q_6(r) \Psi_2(r) + 2q_8(r) \right). \]
 2. We imposed $N_{[\lambda\rho]\mu} = 0$ which is equivalent to $T_{\lambda\mu\nu} = Q_{[\mu\nu]\lambda}$:
 → Shear transformations in the general linear group involves the part of the anholonomic connection describing a shear current or charge to take values in the symmetric traceless part of the Lie algebra.
 3. We demand the corresponding torsion and nonmetricity scalars of the solution to be regular.

- After following these three steps we end up with 2 dof (metric)+ 5 dof (torsion/nonmetricity) which is only 7 dof.
By plugging these conditions in the field equations, there are several branches but only one has solutions with dynamical shears. This branch involves the constants of the theory as

\[f_2 = -\frac{1}{4} f_1. \]
New solution only with shears

By plugging these conditions in the field equations, there are several branches but only one has solutions with dynamical shears. This branch involves the constants of the theory as

\[f_2 = -\frac{1}{4} f_1. \]

The form of \(q_i \) and \(t_i \) is involved. One component of nonmetricity is arbitrary! (problem!)
By plugging these conditions in the field equations, there are several branches but only one has solutions with dynamical shears. This branch involves the constants of the theory as

$$f_2 = -\frac{1}{4} f_1.$$

The form of q_i and t_i is involved. One component of nonmetricity is arbitrary! (problem!)

The metric behaves as

$$ds^2 = \Psi_1(r) \, dt^2 - \frac{dr^2}{\Psi_2(r)} - r^2 \left(d\theta_1^2 + \sin^2 \theta_1 \, d\theta_2^2 \right).$$

with

$$\Psi_1(r) = \Psi_2(r) = 1 - \frac{2m}{r} - \frac{2f_1 \kappa_{\text{sh}}^2}{r^2},$$

where κ_{sh} is interpreted as a new charge, ”shear charge”.
After finding the shear part alone, we found a theory having the first solution (with spin+dilation) plus the second (with only shears).
After finding the shear part alone, we found a theory having the first solution (with spin+dilation) plus the second (with only shears).

The action of the full model is

\[
S = \frac{1}{64\pi} \int \left[-4R - 6d_1 \tilde{R}_\lambda^{[\rho\mu\nu]} \tilde{R}^{\lambda[\rho\mu\nu]} - 9d_1 \tilde{R}_\lambda^{[\rho\mu\nu]} \tilde{R}^{\mu[\lambda\nu\rho]} \\
+ 2d_1 \left(\tilde{R}_{[\mu\nu]} + \hat{R}_{[\mu\nu]} \right) \left(\tilde{R}^{[\mu\nu]} + \hat{R}^{[\mu\nu]} \right) + 18d_1 \tilde{R}_\lambda^{[\rho\mu\nu]} \tilde{R}^{(\lambda\rho)\mu\nu} \\
- 3d_1 \tilde{R}^{(\lambda\rho)\mu\nu} \tilde{R}^{(\lambda\rho)\mu\nu} + 6d_1 \tilde{R}^{(\lambda\rho)\mu\nu} \tilde{R}^{(\lambda\mu)\rho\nu} + 2(2e_1 - f_1) \tilde{R}^{\lambda\mu\nu} \tilde{R}^{\rho\mu\nu} \\
+ 8f_1 \tilde{R}^{(\lambda\rho)\mu\nu} \tilde{R}^{(\lambda\rho)\mu\nu} - 2f_1 \left(\tilde{R}^{(\mu\nu)} - \hat{R}^{(\mu\nu)} \right) \left(\tilde{R}^{(\mu\nu)} - \hat{R}^{(\mu\nu)} \right) \\
+ 3 \left(1 - 2a_2 \right) T^{[\lambda\mu\nu]} T^{[\lambda\mu\nu]} \right] d^4 x \sqrt{-g}.
\]
After finding the shear part alone, we found a theory having the first solution (with spin+dilation) plus the second (with only shears).

The action of the full model is

\[
S = \frac{1}{64\pi} \int \left[-4R - 6d_1 \tilde{R}_\lambda[\rho\mu\nu] \tilde{R}^{\lambda[\rho\mu\nu]} - 9d_1 \tilde{R}_\lambda[\rho\mu\nu] \tilde{R}^{\mu[\lambda\nu\rho]}
\right.
\]
\[
+ 2d_1 \left(\tilde{R}_{[\mu\nu]} + \hat{R}_{[\mu\nu]} \right) \left(\tilde{R}^{[\mu\nu]} + \hat{R}^{[\mu\nu]} \right)
+ 18d_1 \tilde{R}_\lambda[\rho\mu\nu] \tilde{R}^{(\lambda\rho)_{\mu\nu}}
\]
\[
- 3d_1 \tilde{R}_{(\lambda\rho)_{\mu\nu}} \tilde{R}^{(\lambda\rho)_{\mu\nu}} + 6d_1 \tilde{R}_{(\lambda\rho)_{\mu\nu}} \tilde{R}^{(\lambda\mu)_{\rho\nu}} + 2 \left(2e_1 - f_1 \right) \tilde{R}^\lambda \lambda_{\mu\nu} \tilde{R}^\rho \rho_{\mu\nu}
\]
\[
+ 8f_1 \tilde{R}_{(\lambda\rho)_{\mu\nu}} \tilde{R}^{(\lambda\rho)_{\mu\nu}} - 2f_1 \left(\tilde{R}_{(\mu\nu)} - \hat{R}_{(\mu\nu)} \right) \left(\tilde{R}^{(\mu\nu)} - \hat{R}^{(\mu\nu)} \right)
\]
\[
+ 3 \left(1 - 2a_2 \right) T_{\lambda\mu\nu} T^{[\lambda\mu\nu]} \right] d^4 x \sqrt{-g}.
\]

When traceless part of nonmetricity is zero, the above action coincides with the first one.
Since we already found the solution for each model independently, it is not so difficult to find that the solution for the full model.

\[
ds^2 = \Psi_1(r) dt^2 - \Psi_2(r) - r^2 d\theta_1^2 + \sin^2 \theta_1 d\theta_2^2.
\]

with

\[
\Psi_1(r) = \Psi_2(r) = 1 - \frac{2m}{r} + d_1 \kappa^2 s - 4e_1 \kappa^2 d - 2f_1 \kappa^2 \sinh^2 r,
\]

having the three possible charges: spin, dilation and shear.
Since we already found the solution for each model independently, it is not so difficult to find that the solution for the full model. In this case, all nonmetricity components are fully set by the field equations (remember that in the shear case, one component was free).
Since we already found the solution for each model independently, it is not so difficult to find that the solution for the full model.

In this case, all nonmetricity components are fully set by the field equations (remember that in the shear case, one component was free)

The solution gives us the following metric

\[ds^2 = \Psi_1(r)\, dt^2 - \frac{dr^2}{\Psi_2(r)} - r^2 \left(d\theta_1^2 + \sin^2 \theta_1\, d\theta_2^2 \right) . \]

with

\[\Psi_1(r) = \Psi_2(r) = 1 - \frac{2m}{r} + \frac{d_1\kappa_s^2 - 4e_1\kappa_d^2 - 2f_1\kappa_{sh}^2}{r^2}, \]

having the three possible charges: spin, dilation and shear.
On the other hand, the solution can also be trivially generalised to include the cosmological constant and Coulomb electromagnetic fields with electric and magnetic charges q_e and q_m, which are decoupled from torsion under the assumption of the minimal coupling principle. This natural extension is then described by a Reissner-Nordström-de Sitter-like geometry

$$
\Psi(r) = 1 - \frac{2m}{r} + \frac{d_1 \kappa_s^2 - 4e_1 \kappa_d^2 - 2f_1 \kappa_{sh}^2 + q_e^2 + q_m^2}{r^2} + \frac{\Lambda}{3} r^2 ,
$$

which turns out to represent the broadest family of static and spherically symmetric black hole solutions obtained in MAG so far.
Conclusions and what do to next

- We found the first solutions with dynamical torsion and nonmetricity. First with the Weyl and then with the traceless part of nonmetricity.

1. Cosmology of the complete model: from inflation to dark energy.
2. Perturbations of this solution: Is it stable? Quasinormal modes?
3. What is the role of dilations/shears in particle physics?
Conclusions and what do to next

- We found the first solutions with dynamical torsion and nonmetricity. First with the Weyl and then with the traceless part of nonmetricity.
- We found the correspondence of Plebansky-Damianski solution in our theory in the decoupling limit.

1. Cosmology of the complete model: from inflation to dark energy.
2. Perturbations of this solution: Is it stable? Quasinormal modes?
3. What is the role of dilations/shears in particle physics?
Conclusions and what do to next

- We found the first solutions with dynamical torsion and nonmetricity. First with the Weyl and then with the traceless part of nonmetricity.

- We found the correspondence of Plebansky-Damianski solution in our theory in the decoupling limit.

- The general solution contains the three fundamental charges (spin, dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.

1. Cosmology of the complete model: from inflation to dark energy.
2. Perturbations of this solution: Is it stable? Quasinormal modes?
3. What is the role of dilations/shears in particle physics?
Conclusions and what do to next

- We found the first solutions with dynamical torsion and nonmetricity. First with the Weyl and then with the traceless part of nonmetricity.

- We found the correspondence of Plebansky-Damianski solution in our theory in the decoupling limit.

- The general solution contains the three fundamental charges (spin, dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.

- It is worth studying:
Conclusions and what do to next

- We found the first solutions with dynamical torsion and nonmetricity. First with the Weyl and then with the traceless part of nonmetricity.

- We found the correspondence of Plebansky-Damianski solution in our theory in the decoupling limit.

- The general solution contains the three fundamental charges (spin, dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.

- It is worth studying:
 1. Cosmology of the complete model: from inflation to dark energy.
Conclusions and what do to next

- We found the first solutions with dynamical torsion and nonmetricity. First with the Weyl and then with the traceless part of nonmetricity.

- We found the correspondence of Plebansky-Damianski solution in our theory in the decoupling limit.

- The general solution contains the three fundamental charges (spin, dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.

- It is worth studying:
 1. Cosmology of the complete model: from inflation to dark energy.
 2. Perturbations of this solution: Is it stable? Quasinormal modes?
Conclusions and what do to next

- We found the first solutions with dynamical torsion and nonmetricity. First with the Weyl and then with the traceless part of nonmetricity.

- We found the correspondence of Plebansky-Damianski solution in our theory in the decoupling limit.

- The general solution contains the three fundamental charges (spin, dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.

- It is worth studying:
 1. Cosmology of the complete model: from inflation to dark energy.
 2. Perturbations of this solution: Is it stable? quasinormal modes?
 3. What is the role of dilations/shears in particle physics?