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AID field theories Introduction

Introduction

Grand Problem – quantizing gravity

• In an attempt to understand how to modify the Einstein’s
gravity which is not UV-complete we turn to more funda-
mental approaches

Strings

• Strings and especially string field theory should in principle
give a chance to understand quantum gravity

Strings feature non-local interactions in the form of higher-
and even infinite-derivative form factors

• Aref’eva, Barvinskiy, Biswas, Koivisto, Krasnikov, Kuz’min,
Mazumdar, Modesto, Sen, Siegel, Shapiro, Tomboulis, Wit-
ten, Zwiebach, . . .
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AID field theories Physics

Physical excitations

Suppose we modify the propagators as follows

□ − m2 → G(□)

Recall, in D = 4 in (− + ++)

L =
1

2
ϕ(□ − m2)ϕ – good field

−□ gives a ghost, +m2 gives a tachyon (for real m).
Consider

L =
1

2
ϕ(□ − m2)(□ − µ2)ϕ

This Lagrangian describes 2 physical excitations and the
second one is a ghost. The higher degree polynomial in □
will just produce more ghosts.
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AID field theories Physics

Analytic Infinite Derivative (AID) way around

To preserve the perturbative physics we demand

G(□) = (□ − m2)e2σ(□)

where σ(□) must be an entire function resulting in the fact
that the exponent of it has no roots.

Thus

L =
1

2
ϕ(□ − m2)e2σ(□)ϕ

So, yes, we can incorporate infinite number of derivatives
by employing properties of entire functions.
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AID field theories Non-local scalar field

Non-local scalar field [arxiv:2103.01945]

Consider AID scalar field action:

L =
1

2
ϕ(□ − m2)f−1(□)ϕ −

λ

4!
ϕ4

Again, we demand the form-factor to be an exponent of an
entire function. We also normalize it as f(0) = f(m2) = 1 to
preserve the local answers in the IR limit.

We can adjust the fall rate for large momenta by choosing
the form-factor. Power-counting convergence requires the fall
faster than ∼ 1/p2.
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AID field theories Non-local scalar field

Fish graph and one-loop unitarity

0

As a matter of definition we write amplitudes in Euclidean
signature and analytically continue the result to Minkowski
values of external momenta. [Pius,Sen,arXiv:1604.01783]

M = −i
λ2

32π4
I(p)

We compute the integral with euclidean internal momentum
k and also account for poles shown above.
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AID field theories Non-local scalar field

Result for the fish graph with f(k2) = f(−k2)

M(p) = −
λ2

64π3p

∫ ∞

0
J1(px)J1(kx)J1(qx)f(k

2)f(q2)dkdqdx

+ i
λ2π

32
+

λ2

32p2

∫ p2

−p2
f(z)dz

If f(z) is an integrable function than the last term gives an
apparently universal ∼ 1/p2 contribution for any even form-
factor.
We can show numerically that the model remains weakly

coupled in contrast to f(p2) = e−αp2

Examples used were f = e−p4 and f = e−Γ(0,p4)−γ−log(p4)
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Can we modify GR using AID operators

Interesting development unfortunately leading to a non-
unitary theory

• Stelle’s 1977 and 1978 papers show that R2 gravity is renor-
malizable gravity with the price of a physical (Weyl) ghost

Big success

• Starobinsky inflation is based on R2 and works perfectly

The idea is to make use of AID form-factors to exorcise the
Weyl ghost
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Outline of the general idea

We start with constructing propagator in at least Minkowski
background in a generic gravity theory

See manifestly that one cannot avoid an infinite tower of
derivatives if a ghost-free theory is expected

How to deal with such theories? SFT would teach

What does it mean for the proposed gravity generalization?
Towards quantum gravity

Develop Analytic infinite derivative gravity and see, whether
it is observationally viable
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AID field theories Most general action

Pure gravity arguments why infinite derivatives appear

We start with

S =

∫
dDx

√
−g

P0 +
∑
i

Pi

∏
I

(ÔiIQiI)


Here P and Q depend on curvatures and O are operators

made of covariant derivatives.

Everywhere the respective dependence is analytic in IR.

Let’s name it general analytic gravity

Question:
formulate an action which would reproduce the linear per-
turbations of the general analytic gravity around MSS
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AID field theories Quadratic action

Action to study: first step

Excluding all the terms which vanish around MSS and mas-
saging others we arrive to the following action
[1602.08475, 1606.01250]:

S =

∫
dDx

√
−g

(
M2

PR

2
− Λ

+
λ

2

(
RFR(□)R + LµνFL(□)Lµν + WµνλσFW (□)Wµνλσ

))

Here FX(□) =
∑

n≥0 fXn□
n and Lµν = Rµν − 1

DRgµν

Thanks to the Bianchi identities one can further achieve
FL(□) = 0 in D = 4 and FL(□) = const in D > 4.
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AID field theories Quadratic action

Action to study [1711.08864]

S =

∫
d4x

√
−g

(
M2

PR

2
− Λ

+
λ

2

(
RFR(□)R + WµνλσFW (□)Wµνλσ

))
Recall, that FX(□) =

∑
n≥0 fXn□

n and we often use F ≡ FR

We assume that □ enters form-factors in a combination
□/M2

s where the mass parameter is the non-locality scale.
We put Ms = 1 for a while.

This is the most general action to study linear perturbations
around MSS (in 4 dimensions).

We name it Analytic infinte derivative (AID) gravity.
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AID field theories Quadratic action

Covariant spin-2 propagator on MSS:

S2 =
1

2

∫
dx4

√
−ḡ h⊥

νµ

(
□̄ −

R̄

6

) [
P(□̄)

]
h⊥µν

P(□̄) = 1 +
2

M2
P

λfR0
R̄+

2

M2
P

λFW

(
□̄ +

R̄

3

)(
□̄ −

R̄

3

)

The Stelle’s case corresponds to FW = 1 such that

P(□̄)Stelle = 1 +
2

M2
P

λfR0
R̄ +

2

M2
P

λ · 1 ·
(
□̄ −

R̄

3

)

This is an obvious second pole which will be the ghost.
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AID field theories Minkowski

Physical propagators around Minkowski, AID form-factors:

Os =
(6λ□F(□) − M2

P )(2λ□FW (□)/M2
P + 1)

6λ(F(□) + 1
3FW (□))

=(□ − µ2)e2σ0(□)

Ot = □(2λ□FW (□)/M2
P + 1) = □e2σ(□)

Then, avoiding all odds:

FW (□) = M2
P

e2σ(□) − 1

2λ□

F(□) =
M2

P

6λ□

[(
□

µ2
− 1

)
e2σ(□) + 1

]
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AID field theories Introduction

Outline of the general idea

We have constructed propagator in the Minkowski back-
ground (in fact even on MSS) in a generic gravity theory

We just have seen manifestly that one cannot avoid an infi-
nite tower of derivatives if a ghost-free theory is expected

And, yes, SFT has taught us how to deal with such theories

What does it mean for the proposed gravity generalization?
Towards quantum gravity

Develop Analytic infinite derivative gravity and see, whether
it is observationally viable
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AID field theories UV completeness

UV completeness [1710.07759]

Minkowski propagator:

Π = −

 P (2)

k2e2σ(−k2)
−

P (0)

2k2e2σ(−k2)
(
1 + k2

µ2

)


To guarantee that the QFT machinery works we arrange a
polynomial decay of the propagator near infinity. The rate of
the decay is our choice.
Recall that we need the functions σ to be entire.
An example of such a function can be, for instance

σ ∼ Γ
(
0, p(z)2

)
+ γE + log

(
p(z)2

)
where p(z) is a polynomial.
Beyond 1-loop the powercounting arguments work just like

in the higher derivative regularization.
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AID field theories UV completeness

Amplitudes and Cross-sections

Power-counting works because we have chosen the polyno-
mial decay at infinity

Slavnov-Taylor identities work thanks to the presence of the
diffeomorphism invariance

Exponential decay of form-factors may render the system
to be in the strong-coupling regime. This way amplitudes
become divergent for large external momenta.

The recent works with A.Tokareva have shed light on several
questions including dealing with the essential singularity of
the form-factor at inffinity and maintaining unitarity of the
AID models. (see above)
[2006.06641, 2103.01945]
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AID field theories More real world

What else can AID quadratic action serve for?

• If we just start with the above proposed quadratic in curva-
ture action it can accommodate many interesting solutions
without requiring any other more general gravity model.

• For example, any conformally flat metric which satisfies
□R = r1R with constant r1 is a solution.

• In particular, Starobinsky inflation is an exact solution
here.

• Solution representing a ghost-free bouncing scenarios also
were found.
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AID field theories Starobinsky

Starobinsky inflation in non-local gravity
[1604.03127, 1711.08864] and the recent development [2209.02515]

For any scalar curvature satisfying:

□R = r1R + r2

with r1, r2 constants we have a solution of AID gravity if:

F(1)(r1) = 0,
r2

r1
(F1 − f0) = −

M2
P

2λ
+ 3r1F1, F1 ≡ F(r1),

4Λr1 = −r2M
2
P , but for us Λ = 0 ⇒ r2 = 0

In a wide range of assumptions it exhuasts all the space of
solution.

Notice that the Weyl part does not contribute to the back-
ground because the configuration of interest is conformally
flat.
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AID field theories Power spectra and r

Tensor to scalar ratio r

r =
2|δh|2

|δR|2
= 48

Ḣ2

H4
e2σ(R̄/6)

All quantities here are at the horizon crossing k = Ha.

Analogously

N =

∫ tf

ti

Hdt =
1

2ϵ1
⇒ r = 48ϵ21e

2σ(R̄/6) =
12

N2
e2σ(R̄/6)

We have gained an extra factor e2σ(R̄/6) compared to the
local R2 inflation.
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AID field theories Non-Gaussianities

Non-Gaussianities, briefly
[2003.00629] and the recent development [2210.16459]

• fNL can be made large.

• The consistency relation known to hold for a single scalar
field model of inflation is violated here.

• We however have constraints on this number from observa-
tions and this crucially shows up in our AID gravity model
as the constraint on the scale of non-locality which we de-
note Ms

• Namely
Ms > 10−4MP

• Moreover, it can be either sign of fNL based on the lowest
power of polynomial of our entire function, i.e. whether it
is odd or even.
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Conclusions and Outlook

• A class of analytic infinite derivative (AID) theories has
been considered targeting the goal of constructing a UV
complete and unitary gravity. These models have clear
connection with SFT.

• We have shown that there is a consistent prescription to
maintain unitarity.

• This gravity model features many nice properties, like na-
tive embedding of the Starobinsky inflation, finite New-
tonian potential at the origin, presence of a non-singular
bounce, etc.

• Corrections to the inflationary observables are explicitly
computed in terms of model parameters

• We provide arguments in favor of this approach as the
quantum gravity candidate.
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Thank you for listening!


