<u>The rise and fall of the black hole chemistry:</u> <u>what happens when we vary Lambda?</u>

2022 Winter CAS-JSPS Workshop in Cosmology, Gravitation, and Particle Physics CEICO, Prague, Czech Republic December 12-17, 2022

Plan of the talk

- I. Black holes as thermodynamic objects
- II. The rise of black hole chemistry
- III. Extended bulk-boundary correspondence (the fall of black hole chemistry)
- IV. Summary

Based on:

- DK, R.B. Mann, *P-V criticality of charged AdS black holes*, JHEP 07 (2012) 033; ArXiv:1205:0559.
- W. Cong, DK, R.B. Mann, *Thermodynamics of AdS black holes: central charge criticality*, PRL 127 (2021) 9, 091301; Arxiv:2105.02223.
- W.Cong, DK, R.B. Mann, M.R. Visser, Holographic CFT phase transitions and criticality of charged AdS black holes, JHEP 08 (2022) 174.; Arxiv: 2112:14848.

Thermodynamic Objects

Black holes as thermodynamic objects

If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations-then so much the worse for Maxwell's equations. If it is found to be contradicted by observation-well these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation.

Sir Arthur Stanley Eddington

Gifford Lectures (1927), *The Nature of the Physical World* (1928), 74.

Black holes and their characteristics

Schwarzschild black hole:

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{2M}{r}} + r^{2}d\Omega^{2}$$

• <u>asymptotic mass</u> (total energy)

$$M = -\frac{1}{8\pi} \int_{S_{\infty}} *dk \,, \quad k^a = (\partial_t)^a$$

<u>black hole horizon</u>: (radius rh=2M)

surface gravity
$$(k^b \nabla_b k^a)_{|H} = \kappa k^a_{|H}$$
 \Longrightarrow $\kappa = \frac{1}{4M}$
surface area $A = 4\pi r^2_h$ never decreases
 $dM = \kappa dA$ $\xleftarrow{}$ Bekenstein? $dE = TdS$

Hawking (1974):

$$T = \frac{\kappa}{2\pi}, \quad S = \frac{A}{4}$$

derivation used QFT in curved spacetime

Other approaches:

• Euclidean path integral approach (Gibbons & Hawking-1977)

$$Z = \int D[g_{ab}] e^{-S_E[g]} \approx e^{-S_E[g_c]}$$

$$F = -\frac{1}{\beta} \log Z \implies S = -\frac{\partial F}{\partial T} = \frac{A}{4}$$

Euclidean manifold non-singular if the imaginary time τ identified with a certain period $\Delta \tau$. In QFT this corresponds to a finite

temperature

$$T = \frac{1}{\beta} \,, \quad \beta = \Delta \tau$$

• Tunneling approach, LQG, String theory,

Black hole thermodynamics

• First law of black hole thermodynamics:

$$\delta M = T\delta S + \sum_{i} \Omega_i \delta J_i + \Phi \delta Q$$

• Smarr-Gibbs-Duhem relation:

$$\frac{d-3}{d-2}M = TS + \sum_{i} \Omega_i J_i + \frac{d-3}{d-2} \Phi Q$$

• Specific heat of AF Schwarzschild BH is negative (cannot have thermal equilibrium)

Where is the PdV term?

2) The rise of black hole chemistry

Black hole chemistry

Simple idea:

- Consider an asymptotically AdS black hole spacetime
- Identify the cosmological constant with a thermodynamic pressure

$$P = -\frac{\Lambda}{8\pi G}, \quad \Lambda = -\frac{(D-1)(D-2)}{2l^2}$$

• Allow this to be a "dynamical" quantity

(Teitelboim and Brown – 1980's)

Immediate consequences

• Extended black hole thermodynamics:

D.Kastor, S.Ray, and J.Traschen, *Enthalpy and the Mechanics of AdS Black Holes*, Class. Quant. Grav. 26 (2009) 195011.

$$\delta M = T\delta S + \Theta \,\delta P + \dots$$

 Introduces the standard -PdV term into black hole thermodynamics

• Black hole mass M no longer identified with energy but rather interpreted as **enthalpy**

$$U = M + \epsilon V = M - PV$$

Immediate consequences

 $Schwarzschild(-\Lambda dS)$

Black hole volume:

$$V = \left(\frac{\partial M}{\partial P}\right)_{S,\dots} \qquad \Longrightarrow \qquad V = \frac{4}{3}\pi r_+^3$$

- More involved for more complicated black holes
- The fact this this provides a good definition of volume is supported by the **Reverse Isoperimetric Inequality** conjecture:

M. Cvetic, G.W Gibbons, DK, C.N. Pope, *Black hole enthalpy and an entropy inequality for the thermodynamic volume,* Phys. Rev. D84 (2011) 024037, [arXiv:1012.2888].

Immediate consequences

<u>Consistent Smarr relation:</u>

$$\delta M = T\delta S + V\delta P + \phi\delta Q + \Omega\delta J,$$
$$M = \frac{D-2}{D-3}(TS + \Omega J) + \phi Q - \frac{2}{D-3}PV$$

- Phase transitions:
 - AdS black holes can be in thermal equilibrium
 - Exhibit interesting **phase transitions**
 - Provide dual description of CFT at finite temperature via AdS/CFT correspondence

Canonical Example: VdW behavior of charged AdS black holes

$$\begin{split} ds^2 &= -f dt^2 + \frac{dr^2}{f} + r^2 d\Omega_2^2 \,, \quad A = -\frac{Q}{r} dt \\ f &= 1 - \frac{2GM}{r} + \frac{GQ^2}{r^2} + \frac{r^2}{l^2} \,, \end{split}$$

• Basic thermodynamic quantities:

$$\begin{split} M &= \frac{r_+(l^2+r_+^2)}{2l^2G} + \frac{Q^2}{2r_+} \,, \quad T = \frac{3r_+^4 + l^2r_+^2 - GQ^2l^2}{4\pi l^2r_+^3} \\ S &= \frac{\pi r_+^2}{G} \,, \quad V = \frac{4\pi r_+^3}{3} \,, \quad \phi = \frac{Q}{r_+} \,, \end{split}$$

$$F = M - TS = \frac{3GQ^2l^2 + l^2r_+^2 - r_+^4}{4Gr_+l^2}$$

P-V criticality

 DK, R.B. Mann, P-V criticality of charged AdS black holes, JHEP 1207 (2012) 033.

Van der Waals fluid

FIG. 2. Maxwell's equal area law. The 'oscillating' (dashed) part of the isotherm $T < T_c$ is replaced by an isobar, such that the areas above and below the isobar are equal one another.

$$\left(P + \frac{a}{v^2}\right)(v - b) = T$$

Parameter <u>a</u> measures the **attraction** between particles (a>0) and <u>b</u> corresponds to "**volume of fluid particles**".

Critical point:

$$\rho_c = \frac{P_c v_c}{T_c} = \frac{3}{8}$$

P-V criticality

 DK, R.B. Mann, P-V criticality of charged AdS black holes, JHEP 1207 (2012) 033.

Charged black hole

FIG. 2. Maxwell's equal area law. The 'oscillating' (dashed) part of the isotherm $T < T_c$ is replaced by an isobar, such that the areas above and below the isobar are equal one another.

$$\left(P + \frac{a}{v^2}\right)(v - b) = T$$

$$P = \frac{T}{v} - \frac{1}{2\pi v^2} + \frac{2Q^2}{\pi v^4}$$

Critical point:

$$\rho_c = \frac{P_c v_c}{T_c} = \frac{3}{8}$$

Free energy: demonstrates standard swallow tail behavior $1 \left(\frac{8\pi}{2} \right)^2$

$$F = F(T, P, Q) = \frac{1}{4} \left(r_{+} - \frac{8\pi}{3} P r_{+}^{3} + \frac{3Q^{2}}{r_{+}} \right)$$

2021

Phase diagrams: complete analogy

- Coexistence & critical point described by Clausius-Clapeyron and Ehrenfest equations
- MFT critical exponents

$$\alpha=0\,,\quad \beta=\frac{1}{2}\,,\quad \gamma=1\,,\quad \delta=3$$

More generally: black hole chemistry

Triple point and solid/liquid/gas analogue:

• DK, Mann, Teo, *Black hole chemistry: thermodynamics with Lambda*, CQG 34 (2017) 063001, Arxiv:1608.0614.

<u>Moral</u>

- We have a very **rich structure** of phase transitions
- Thermodynamic pressure P (cosmological constant) plays a role of "control parameter"
- But what is the interpretation on the dual CFT side?

$$+V\delta P$$

FALLOFI

of Rome's fall is complex eraily refers to the way i of hundreds of years unt

3) Extended bulkboundary correspondence (the fall of black hole chemistry)

AdS/CFT interpretation

• Interpretation on boundary field theory

Varying Λ corresponds to varying number of dof N

$$l\sim N$$
 e.g. n=4 SU(N) SYM

$$l \propto N^{\frac{1}{4}}$$

- C. Johnson, Holographic Heat engines, CQG 31 (2014) 205002, Arxiv:1404:5982.
- B. Dolan, Bose condensation and branes, JHEP 10 (2014) 179, ArXiv:1406.7267.
- D.Kastor, S.Ray, J.Traschen, Chemical potential in the frst law of holographic entanglement entropy, Arxiv:1409.3521.

AdS/CFT interpretation

- However, this is not the full story, as the CFT volume in principle also changes
- A. Karch and B. Robinson, *Holographic black hole chemistry*, JHEP 12 (2015 073, Arxiv:1510.0247.
- M. Visser, Holographic thermodynamics requires a chemical potential for color, Axiv:2101.04145.

$$\begin{split} ds^2 &= -\frac{r^2}{L^2} dt^2 + \frac{L^2}{r^2} dr^2 + r^2 d\Omega_{d-1}^2 \\ \lambda &= R/r \end{split} \quad ds^2 = -\frac{R^2}{L^2} dt^2 + R^2 d\Omega_{d-1}^2 \end{split}$$

AdS/CFT interpretation

• Standardly, one choses

$$R = L \quad \Longrightarrow \quad \mathcal{V} = \Omega_{d-1} L^{d-1}$$

and the volume also changes with variations of L.

• The second (quite natural from CFT side) possibility is to keep R general.

In this case, variations of L are independent of variations of the CFT volume. However, what do the variations of R correspond to in the bulk?

• In any case, we have the following CFT TDs:

Holographic first law (Visser 21)

$$\delta E = T\delta S - pd\mathcal{V} + \tilde{\phi}\delta\tilde{Q} + \Omega\delta J + \tilde{\mu}\delta C$$

- Here, E is the **internal energy** not **enthalpy**!
- Allows to study μ-C criticality

• Accompanied by
$$E = (D-2)p\mathcal{V}$$

$$E = TS + \tilde{\phi}\tilde{Q} + \Omega J + \tilde{\mu}C$$

- The first equality equation of state comes from the dimensional analysis
- The second equality holographic Smarr comes from "central charge extensivity" (note that it does not have D-dependent factors!)

Corresponding bulk first law

Holographic dictionary

$$\begin{split} C &= \frac{\Omega_{d-1}L^{d-1}}{16\pi G_N} \quad \text{(Einstein gravity)} \qquad \tilde{Q} = QL \,. \\ S &= \frac{A}{4G_N}, \quad E = M\frac{L}{R}, \quad T = \frac{\kappa}{2\pi}\frac{L}{R} \quad \tilde{\Phi} = \frac{\Phi}{L}\frac{L}{R} \end{split}$$

• Yields the following bulk first law:

$$dM = \frac{\kappa}{8\pi G_N} dA + \Phi dQ + \frac{\Theta}{8\pi G_N} d\Lambda - (M - \Phi Q) \frac{dG_N}{G_N}$$

- Reduces to the previous when G fixed
- Note also, that one of dG or dΛ is not "required" if R also varied.

Bulk first law with "mixed variables"

• Starting with the above bulk first law:

$$\delta M = \frac{\kappa}{8\pi G} \delta A + \Omega \delta J + \phi \delta Q - \frac{V}{8\pi G} \delta \Lambda - \alpha \frac{\delta G}{G}$$

• We can change variables and obtain a Mixed first law:

$$C = k \frac{l^{D-2}}{16\pi G} \implies \frac{\delta G}{G} = -\frac{2}{D} \frac{\delta C}{C} - \frac{D-2}{D} \frac{\delta P}{P}$$

$$\delta M = T\delta S + \Omega\delta J + \phi\delta Q + V_C\delta P + \mu\delta C$$

Enables one to study bulk TDs at fixed central charge
 C (while both G and I vary)

 $\frac{\text{Bulk mu-C criticality}}{F = M - TS = F(T, P, Q, C)}$

Phase diagram

Only when CFT has **large number of dof**, C>Cc, the bulk black hole can experience a phase transition. Thus, **BH chemistry interpretation seems lost!**

Summary

1) Black hole chemistry (TDs with variable Lambda) provides an interesting framework for AdS black hole thermodynamics:

$$\delta M = T\delta S + V\delta P + \phi\delta Q + \Omega\delta J$$

- Extended first law and consistent Smarr
- Black hole mass is enthalpy
- Definition for black hole volume
- Uncovers various phase transitions & similarities with TDs of ordinary systems:

e.g. Van der Waals criticality of charged BHs

 On CFT side, varying Lambda corresponds to both – varying the central charge C and varying the CFT volume.

$$\delta\Lambda \iff \delta C & \delta \mathcal{V}$$

<u>Summary</u>

3) The full **CFT first law**:

$$\delta E = T\delta S - pd\mathcal{V} + \tilde{\phi}\delta\tilde{Q} + \Omega\delta J + \tilde{\mu}\delta C$$

standardly translates to varying both G and Λ in the bulk!

- However, by considering CFT on a sphere of radius
 R, it is possible to vary only one of these (e.g. Λ)
- This then corresponds to the "standard black hole chemistry with its nice bulk interpretation, and its "old" holographic interpretation with variable central charge.

Summary

4) For the bulk thermodynamics (with variable G and Λ) we can write the following **mixed law**:

 $\delta M = T\delta S + \Omega\delta J + \phi\delta Q + V_C\delta P + \mu\delta C$

This allows to study TDs of bulk black holes for fixed **CFT** central charge **C** (kind of TD ensemble).

Interestingly, thermodynamic pressure P is no longer a "control parameter" – **criticality only depends** on the **number of dof** of the dual CFT.

The nice interpretation of **black hole chemistry** seems to fall in this case!