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Two big problems in cosmology

•L does not decay → cc problem: “Why 
is L as small as 8pGr now?”

•K/a2 decays but only slowly → flatness 
problem: “Why is 3K/a2 smaller than
8pGr now?”



Two ways to tackle flatness problem

• If r does not decay for an extended period 
then flatness problem solved → Inflation

• If K/a2 << 8pGr initially then flatness 
problem solved → Quantum cosmology



cc problem is more difficult than flatness one

• L does not decay at all
→ more stringent fine-tuning

• 8pGr may contain terms mimicking L
and changing at phase transitions
→ difficult to make the late cc small 
by early universe dynamics

Probably the most difficult problem in cosmology...



Two cc problems

1. The old cc problem: 
“Why is it so small?” The cc is not 
protected against quantum corrections. 
(This must be solved early on -- NOT just a 
problem for long distance physics.)

2. The coincidence problem: 
“Why now?” The cc is the same order of 
magnitude as other components of energy 
density TODAY.



How to solve cc problem?

•Probably we need to solve the old cc problem
BEFORE addressing the coincidence problem.
[Dynamics with a large cc does not bring us 
to a low energy regime.]

•Previous Approaches:
Find reasons for cc=0 to be at or near a local 
minimum of potential --- unstable against 
radiative corrections!

or
Anthropic principle?



Proposal

0

Somehow stalls

Assume that

No fine-tuning of potential

Clearly, this would require unconventional dynamics.
But perhaps that is what the small cc is telling us.

f

Leff

Lmin <  0 



Potential

•No fine-tuning

•Taylor expansion: Leff ≃ ck-1(f-f0)+L0

•Can always shift f0 to set L0 = 0
(c will be changed but it does not matter.)

•Need to stop f at f0, but f wants to roll.

•Key to this model is NOT special potential, but 
special form for a kinetic term.



Analogue (charged box & electric field)

How can we stop 
him/her just before 
zero?

⚫Suppose that m can be controlled by someone watching his/her position. 
⚫Make m → ∞ (with e fixed), when he/she approaches zero. 



Of course, this never happens in the real world.
However, for a scalar field, this may be a theoretical 
possibility, as far as it does not conflict with any 
observations or any experiments. 

𝐿 =
1

2
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finite time.
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Moreover,

vanishes when m diverges.

More singular m More regular Lkin



Singular-looking kinetic term at R=0

𝐿𝑘𝑖𝑛 = −
1

2𝑓 𝑅
𝜕𝜇𝜙𝜕𝜇𝜙

(−++ +)

• Stable under radiative corrections! 

Other kinetic terms can exist: the most 

singular-looking term dominates.

• Does NOT generate terms like 1/f(R).

𝑓(𝑅) ≈ (𝜅4𝑅2)𝑚 ∝ (𝜅4𝐻4)𝑚



Asymptotic behavior in FLRW

Equation of motion

𝑉(𝜑) ≈ 𝑐(𝜙 − 𝜙0)ሶ𝜋 + 3𝐻𝜋 + 𝑐 = 0, 𝜋 ≡
ሶ𝜙

𝑓
for

𝐻𝜋 → 𝑐𝑜𝑛𝑠𝑡. < 0 (𝑡 → ∞)

Feedback mechanism

By using the (effective) Friedmann equation 3𝐻2 ≈ 𝑉

ሶ𝑉 ≈ ሶ𝜙 = 𝑓𝜋 ≈ −𝐻4𝑚−1≈ −𝑉2𝑚−1/2

𝑉 ∝ 𝑡−1/(2𝑚−3/2) → 0 (𝑡 → ∞)

𝐿𝑘𝑖𝑛 = 𝑓𝜋2 ≈ 𝐻4𝑚−2 << 𝑅 ≈ 𝐻2

<< 𝛼𝑅2 ≈ 𝛼𝐻4

for

for 𝑚 > 3/2

𝑚 > 1

At low energy

𝜅 = 1, 𝑐 = 𝑂(1)

ሶ𝐻/𝐻2 ≈ 𝑐𝑜𝑛𝑠𝑡. ≤ 0if



Note that the potential includes all contributions to the 
cosmological constant (eg. Quantum corrections, etc.).

𝑉(𝜙) ≈ 𝑐𝜅−3(𝜙 − 𝜙0) near 𝑉 ≈ 0

Shift of the ground 
state energy

Change of c       
and f0

The feedback mechanism is 
insensitive to c and f0 .

Any contributions to the cosmological constant 
can be dynamically cancelled.

( f rolls
very slowly.)

f

V + DV

0



Recovery of Einstein gravity and stability

•Surprisingly, despite the very singular-looking 
action, the low energy gravity is stable and 
reduces to Einstein gravity, provided that aR2

(with a>0) is added to the Lagrangian.

•Two scalar d.o.f. satisfy the no-ghost 
conditions and have unit sound speeds. 

• Feedback mechanism  Leff → + 0 .

• Recovery of the standard Friedmann eq.

• Recovery of the linearized Einstein eq.

hep-th/0306208

section V.A.4 of arxiv:1006.0281



Empty universe problem

•The cc indeed goes to 0 .

•But, the energy density of matter and 
radiation approaches 0 even faster.

•Thus, some form of reheating is required. 
Otherwise, we would end up with a 
vanishing-cc but empty universe. 



Summary so far

•Feedback mechanism Leff → + 0 is 
stable under radiative corrections!

•Recovery of the standard Friedmann eq.

•Recovery of the linearized Einstein eq.

•However, realistic cosmology requires 
reheating.



Reheating without spoiling small cc

• If we consume Leff then Leff after reheating would be negative. 

• Leff should go back to almost the same value after reheating. 

• Introduce a field j2 violating the null energy condition (NEC), 
r2 + P2 ≧ 0 , to increase the energy density. 

• Couple j2 to yet another field j3 that reheats the universe by 
using the energy density created by j2 .

• Suppose that the field space for j2 is periodic so that the 
reheating process repeats. 

ሶ𝜌 + 3𝐻(𝜌 + 𝑃) = 0
These suggest the following scenario.

c.f.

This is not easy ...



Reheating without spoiling small cc

j1 relaxes cc slowly

(f is renamed to j1)
j3 reheats the universe by using 

the energy density created by j2

Contribution of

j1 to H(t)

Contribution of

j2 & j3 to H(t)

cc relaxation

j2 field space is periodic → cyclic 



1st step: cc relaxation

with

• Feedback mechanism Leff → + 0 is stable under 
radiative corrections!

• Recovery of the standard Friedmann eq.

• Recovery of the linearized Einstein eq.

(f is renamed to j1)

(f0 is renamed to v)



Avoid overshooting during NECV & reheating

• Eom still implies                                              . 

• However, the contribution of j2 & j3 to H(t) breaks the 
relation                   . 

• Thus j1 might overshoot to negative cc.  

• During one period of NECV & reheating, 

,

and H can be as large as max H23, where H23 is the 
contribution of j2 & j3 to H(t).  

• Avoidance of overshooting, i.e. |DV1| < Lobs , is ensured if 

where c and k = 1/MPl are recovered.

• This is easily satisfied for a sufficiently large m.

Δ𝑉1 ≈ −H4m−1Δ𝑡 ≈ −𝐻4𝑚−1
|Δ𝜑2|

𝑀2

3𝐻2 ≈ 𝑉1

ሶ𝑉1 ≈ ሶ𝜑1 = 𝑓𝜋1 ≈ −𝐻4𝑚−1 𝜅 = 1, 𝑐 = 𝑂(1)

M2 ≡ ሶ|𝜑2|

|Δ𝜑2|

𝑀
<

M

c2MPl

𝑀𝑃𝑙

max 𝐻23

4𝑚−1 Λ𝑜𝑏𝑠

𝑀𝑃𝑙
2



2nd & 3rd steps: NECV & reheating

• Ansatz for K : up to 2nd order in X2

𝐾 = 𝑓1 𝜑2, 𝜑3 𝑋2 + 𝑓2 𝜑2, 𝜑3 𝑋2
2 − 𝑉 𝜑2, 𝜑3

• Ansatz for G3 : proportional to X2

𝐺3 = 𝑓 𝜑2, 𝜑3 𝑋2
• Ansatz for P: up to 1st order in X3

𝑃 = 𝑋3 − 𝑈 𝜑3
• The NECV sector:

and the reheating sector  

couple to each other through the j3-dependence of 
𝑓1,2 𝜑2, 𝜑3 , 𝑉 𝜑2, 𝜑3 , 𝑓 𝜑2, 𝜑3 .

c.f. Alberte, Creminell, Khmelnitsky, Pirtskhalava, Trincherini, arXiv: 1608.05715



Stability of NECV sector
• Homogeneous & isotropic linear perturbation

• Simple subclass of models →

• In this case the given background is a local attractor if

• Global stability
can be studied by 
phase portraits. 

• The phase portrait 
for a numerical
example  →

~
~

~ ~



No-ghost condition & squared sound speeds
for NECV & reheating sectors
• Homogeneous & isotropic background + inhomogeneous linear 

perturbation

• Decompose the perturbation into scalar, vector and tensor parts

• Tensor part same as GR; vector part non-dynamical

• Two d.o.f. in scalar part
→ two no-ghost conditions & two squared sound speeds

• Simple subclass of models →

• In this case one of the no-ghost condition is simply 𝜕𝑋3𝑃 > 0 and 
one of the squared sound speeds is unity.

• The remaining no-ghost condition and squared sound speed are

and                                                ,

where      ,      and      are similar to the known expressions for the 
single-field case but contain corrections due to j3 . 



Reconstruction of NECV sector

• Four free functions of j2 in NECV sector can be reconstructed 
so that the system admits the following solution.

• We fix two free functions by hand. We choose them as follows. 

so that

• By requiring that the solution given above should satisfy the 
eom’s, the remaining two free functions F1(j2) and F2(j2) are 
written in terms of Hnecv(j2) and (v0, Tdip, Fkb,0, Fkb,1 , Tkb) .

c.f. Alberte, Creminell, Khmelnitsky, Pirtskhalava, Trincherini, arXiv: 1608.05715



Choice of Hnecv(j2)



Reheating sector and 
Coupling between NECV & reheating sectors

• Linear kinetic term and bare potential for reheating sector

3 parameters: bkin, bI and HI

• Coupling the two sectors by the following replacement

3 parameters: akick, bkick, bdip



Shape of reheating potential



Numerical evolution of NECV & reheating sectors







Summary

•Feedback mechanism Leff → + 0 is stable under 
radiative corrections!

•The standard Friedmann eq. recovered @ low E

•The linearized Einstein eq. recovered @ low E

•However, realistic cosmology requires reheating.

•A proof-of-concept model of reheating that does 
not spoil the small Leff that was achieved by the 
feedback mechanism.

•The model consists of (i) a NEC violating field with a 
periodic field space, and (ii) a reheating field.

•The model is stable under both homogeneous and 
inhomogeneous perturbations.



Future work

• How robust is the reheating mechanism? If the NECV 
sector couples to a sufficiently complex system 
including SM and if NECV sufficiently quickly turns off, 
then it is expected that the universe is anyway 
reheated. Can we show this more quantitatively?

• Can we perform numerical evolution with a large 
hierarchy?

• Can the reheating field (or/and the NECV field) be the 
inflaton? 

• Any link to fundamental theories?

• Variant modes?

• …
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