Dynamical Approach to the Cosmological Constant Revisited

Shinji Mukohyama (YITP, Kyoto U)

Ref. 2205.11754 with Paul Martens & Ryo Namba

Also hep-th/0306108 with Lisa Randall hep-th/0306208

Collaborators

Paul Martens

Ryo Namba

Ref. 2205.11754 with Paul Martens & Ryo Namba

Two big problems in cosmology

$$3H^2 = 8\pi G\rho - \frac{3K}{a^2} + \Lambda$$

- Λ does not decay \rightarrow cc problem: "Why is Λ as small as 8π Gp now?"
- K/a² decays but only slowly → flatness problem: "Why is 3K/a² smaller than 8πGρ now?"

Two ways to tackle flatness problem

$$3H^2 = 8\pi G\rho - \frac{3K}{a^2}$$

- If ρ does not decay for an extended period then flatness problem solved \rightarrow Inflation
- If K/a² << 8πGρ initially then flatness problem solved → Quantum cosmology

cc problem is more difficult than flatness one

$$3H^2 = 8\pi G\rho - \frac{3K}{a^2} + \Lambda$$

- Λ does not decay at all
 → more stringent fine-tuning
- 8πGρ may contain terms mimicking Λ and changing at phase transitions
 → difficult to make the late cc small by early universe dynamics

Probably the most difficult problem in cosmology...

Two cc problems

 The old cc problem: "Why is it so small?" The cc is not protected against quantum corrections. (This must be solved early on -- NOT just a problem for long distance physics.)

2. The coincidence problem: "Why now?" The cc is the same order of magnitude as other components of energy density TODAY.

How to solve cc problem?

- Probably we need to solve the old cc problem BEFORE addressing the coincidence problem.
 [Dynamics with a large cc does not bring us to a low energy regime.]
- Previous Approaches: Find reasons for cc=0 to be at or near a local minimum of potential --- unstable against radiative corrections!

Oľ

Anthropic principle?

Proposal

No fine-tuning of potential

Clearly, this would require unconventional dynamics. But perhaps that is what the small cc is telling us.

Potential

No fine-tuning

- Taylor expansion: $\Lambda_{eff} \simeq c \kappa^{-1} (\phi \phi_0) + \Lambda_0$
- Can always shift ϕ_0 to set $\Lambda_0 = 0$ (c will be changed but it does not matter.)
- Need to stop ϕ at ϕ_0 , but ϕ wants to roll.
- Key to this model is NOT special potential, but special form for a kinetic term.

Analogue (charged box & electric field)

Suppose that m can be controlled by someone watching his/her position.
Make m → ∞ (with e fixed), when he/she approaches zero.

$$L = \frac{1}{2}m(t)\dot{x}^{2} - V(x)$$

$$\begin{cases} \dot{p} = -V'(x) \qquad \qquad \text{p remains finite within finite time.} \\ \dot{x} = \frac{p}{m} \qquad \qquad \qquad \text{x stops when m diverges.} \end{cases}$$

Moreover,

Of course, this never happens in the real world. However, for a scalar field, this may be a theoretical possibility, as far as it does not conflict with any observations or any experiments.

Singular-looking kinetic term at R=0

$$L_{kin} = -\frac{1}{2f(R)} \partial^{\mu} \phi \partial_{\mu} \phi \qquad f(R) \approx (\kappa^{4} R^{2})^{m} \propto (\kappa^{4} H^{4})^{m}$$
$$(-+++)$$

- Stable under radiative corrections! Other kinetic terms can exist: the most singular-looking term dominates.
- Does NOT generate terms like 1/f(R).

Asymptotic behavior in FLRW

Equation of motion

$$\dot{\pi} + 3H\pi + c = 0, \ \pi \equiv \frac{\dot{\phi}}{f}$$
 for $V(\phi) \approx c(\phi - \phi_0)$

$$H\pi \rightarrow const. < 0 \ (t \rightarrow \infty)$$
 if $\dot{H}/H^2 \approx const. \le 0$

 $\kappa = 1, c = O(1)$

At low energy

$$\begin{split} L_{kin} &= f\pi^2 \approx H^{4m-2} << R \approx H^2 & \text{for} \quad m>1 \\ &< < \alpha R^2 \approx \alpha H^4 & \text{for} \quad m>3/2 \end{split}$$

By using the (effective) Friedmann equation $3H^2 \approx V$

$$\dot{V} \approx \dot{\phi} = f\pi \approx -H^{4m-1} \approx -V^{2m-1/2}$$

 $V \propto t^{-1/(2m-3/2)} \rightarrow 0 \ (t \rightarrow \infty)$ Feedback mechanism

Recovery of Einstein gravity and stability

hep-th/0306208 section V.A.4 of arxiv:1006.0281

- Surprisingly, despite the very singular-looking action, the low energy gravity is stable and reduces to Einstein gravity, provided that αR^2 (with α >0) is added to the Lagrangian.
- Two scalar d.o.f. satisfy the no-ghost conditions and have unit sound speeds.
- Feedback mechanism $\Lambda_{eff} \rightarrow +0$.
- Recovery of the standard Friedmann eq.
- Recovery of the linearized Einstein eq.

Empty universe problem

•The cc indeed goes to 0.

- •But, the energy density of matter and radiation approaches 0 even faster.
- •Thus, **some form of reheating is required**. Otherwise, we would end up with a vanishing-cc but empty universe.

Summary so far

- Feedback mechanism Λ_{eff} → + 0 is stable under radiative corrections!
- Recovery of the standard Friedmann eq.
- Recovery of the linearized Einstein eq.
- However, realistic cosmology requires reheating.

Reheating without spoiling small cc

This is not easy ...

- If we consume Λ_{eff} then Λ_{eff} after reheating would be negative.
- Λ_{eff} should go back to almost the same value after reheating.

These suggest the following scenario.

c.f. $\dot{\rho} + 3H(\rho + P) = 0$

- Introduce a field φ_2 violating the null energy condition (NEC), $\rho_2 + P_2 \ge 0$, to increase the energy density.
- Couple ϕ_2 to yet another field ϕ_3 that reheats the universe by using the energy density created by ϕ_2 .
- Suppose that the field space for ϕ_2 is periodic so that the reheating process repeats.

Reheating without spoiling small cc

 ϕ_1 relaxes cc slowly (ϕ is renamed to ϕ_1) ϕ_3 reheats the universe by using the energy density created by ϕ_2

 ϕ_2 field space is periodic \rightarrow cyclic

1st step: cc relaxation

- Feedback mechanism $\Lambda_{eff} \rightarrow + 0$ is stable under radiative corrections!
- Recovery of the standard Friedmann eq.
- Recovery of the linearized Einstein eq.

Avoid overshooting during NECV & reheating

- Eom still implies $\dot{V}_1 \approx \dot{\varphi}_1 = f \pi_1 \approx -H^{4m-1}$. $\kappa = 1, c = O(1)$
- However, the contribution of $\varphi_2 \& \varphi_3$ to H(t) breaks the relation $3H^2 \approx V_1$.
- Thus ϕ_1 might overshoot to negative cc.
- During one period of NECV & reheating,

$$\Delta V_1 \approx -\mathrm{H}^{4m-1} \Delta t \approx -H^{4m-1} \frac{|\Delta \varphi_2|}{M^2} , \qquad \mathrm{M}^2 \equiv \dot{|\varphi_2|}$$

and H can be as large as max H_{23}, where H_{23} is the contribution of ϕ_2 & ϕ_3 to H(t).

- Avoidance of overshooting, i.e. $|\Delta V_1| < \Lambda_{obs}$, is ensured if

$$\frac{|\Delta \varphi_2|}{M} < \frac{M}{c^2 M_{\text{Pl}}} \left(\frac{M_{Pl}}{\max H_{23}}\right)^{4m-1} \frac{\Lambda_{obs}}{M_{Pl}^2}$$

where c and $\kappa=1/M_{\textrm{Pl}}$ are recovered.

• This is easily satisfied for a sufficiently large m.

2nd & 3rd steps: NECV & reheating

c.f. Alberte, Creminell, Khmelnitsky, Pirtskhalava, Trincherini, arXiv: 1608.05715

 $\mathscr{L}_{\text{NECV+reh}} = K(\varphi_2, X_2, \varphi_3) - G_3(\varphi_2, X_2, \varphi_3) \Box \varphi_2 + P(\varphi_3, X_3)$

• Ansatz for K : up to 2nd order in X₂ $K = f_1(\varphi_2, \varphi_3)X_2 + f_2(\varphi_2, \varphi_3)X_2^2 - V(\varphi_2, \varphi_3)$ • Ansatz for G₃ : proportional to X₂ $G_3 = f(\varphi_2, \varphi_3)X_2$ • Ansatz for P: up to 1st order in X₂

- Ansatz for P: up to 1^{st} order in X_3 $P = X_3 - U(\varphi_3)$
- The NECV sector:

 $\mathcal{L}_{\text{NECV}} \equiv \mathcal{L}_{\text{NECV+reheat}} \big|_{\varphi_3=0, P=0} = \tilde{K}(\varphi_2, X_2) - \tilde{G}_3(\varphi_2, X_2) \Box \varphi_2$ and the reheating sector $P(\varphi_3, X_3)$

couple to each other through the φ_3 -dependence of $f_{1,2}(\varphi_2,\varphi_3), V(\varphi_2,\varphi_3), f(\varphi_2,\varphi_3)$.

Stability of NECV sector

• Homogeneous & isotropic linear perturbation

$$\varphi_2(t) = \varphi^{(0)}(t) + \epsilon \varphi^{(1)}(t) , \qquad H(t) = H^{(0)}(t) + \epsilon H^{(1)}(t)$$
$$\partial_t \begin{pmatrix} \varphi^{(1)} \\ \pi_{\varphi}^{(1)} \end{pmatrix} = \mathcal{M} \begin{pmatrix} \varphi^{(1)} \\ \pi_{\varphi}^{(1)} \end{pmatrix} , \qquad \mathcal{M} = \begin{pmatrix} 0 & 1 \\ \widetilde{\mathcal{A}} & \widetilde{\mathcal{B}} \end{pmatrix}$$

- Simple subclass of models $\rightarrow \mathcal{A} = 0$
- In this case the given background is a local attractor if $\mathcal{B} \leq 0$.
- Global stability can be studied by phase portraits.
- The phase portrait for a numerical example →

No-ghost condition & squared sound speeds for NECV & reheating sectors

- Homogeneous & isotropic background + inhomogeneous linear perturbation
- Decompose the perturbation into scalar, vector and tensor parts
- Tensor part same as GR; vector part non-dynamical
- Two d.o.f. in scalar part
 - \rightarrow two no-ghost conditions & two squared sound speeds
- Simple subclass of models $\rightarrow \partial_{\varphi_3} G_3 = 0$ & $\partial_{X_3 X_3} P = 0$
- In this case one of the no-ghost condition is simply $\partial_{X_3}P > 0$ and one of the squared sound speeds is unity.
- The remaining no-ghost condition and squared sound speed are

$$\mathcal{G}_S > 0$$
 and $c_s^2 = \frac{\mathcal{F}_S}{\mathcal{G}_S} - \frac{M_{\mathrm{Pl}}^4 X_3 \,\partial_{X_3} P}{\mathcal{G}_S \,\Theta^2}$,

where \mathcal{G}_S , \mathcal{F}_S and Θ are similar to the known expressions for the single-field case but contain **corrections due to** φ_3 .

Reconstruction of NECV sector

c.f. Alberte, Creminell, Khmelnitsky, Pirtskhalava, Trincherini, arXiv: 1608.05715

• Four free functions of ϕ_2 in NECV sector can be reconstructed so that the system admits the following solution.

$$H = H_{\text{necv}}(\varphi_2) , \quad \varphi_2 = t , \quad \bar{N} = 1$$

• We fix two free functions by hand. We choose them as follows.

$$v(\varphi_2) = -v_0 \exp\left(-\frac{\varphi_2^2}{2T_{\rm dip}^2}\right) \qquad F_{\rm kb}(\varphi_2) = F_{\rm kb,0} + F_{\rm kb,1} \exp\left(-\frac{\varphi_2^2}{2T_{\rm kb}^2}\right)$$

that

so that

$$\tilde{K} = M_{\rm Pl}^2 H_{\rm dip}^2 \left[F_1(\varphi_2) X_2 + F_2(\varphi_2) X_2^2 - v(\varphi_2) \right]$$

$$\tilde{C}_{\rm e} = M^2 H_{\rm eq} \left(\langle \varphi_2 \rangle F_{\rm eq} \left(\langle \varphi_2 \rangle \right) X_2 \right)$$

- $G_3 = M_{\rm Pl}^2 H_{\rm necv}(\varphi_2) F_{\rm kb}(\varphi_2) X_2$ • By requiring that the solution given above should satisfy the eom's, the remaining two free functions $F_1(\varphi_2)$ and $F_2(\varphi_2)$ are
- written in terms of $H_{necv}(\varphi_2)$ and $(v_0, T_{dip}, F_{kb,0}, F_{kb,1}, T_{kb})$.

Choice of $H_{necv}(\boldsymbol{\varphi}_2)$ $H_{\text{necv}}(\varphi_2) = H_0 + H_1 \exp\left(-\frac{\varphi_2^2}{2T^2}\right) \frac{1 - \tanh\left(\frac{\varphi_2}{\tau}\right)}{2}$ 1 0.80.6 10^{-3} H_0 H_1 1 0.4 T50000.2500au0 -2 -1.5 -1 -0.50.50 $\mathbf{2}$ 2.5-2.51 1.5

 $10^{-4} \cdot \varphi_2$

Reheating sector and Coupling between NECV & reheating sectors

• Linear kinetic term and bare potential for reheating sector

$$P(\varphi_3, X_3) = M_{\text{Pl}}^2 \beta_{\text{kin}}^2 X_3 - U(\varphi_3)$$
$$U(\varphi_3) = 3M_{\text{Pl}}^2 H_I^2 \left(1 - e^{-\beta_I \varphi_3}\right)^2$$

3 parameters: β_{kin}, β_l and H_l
 • Coupling the two sectors by the following replacement

$$F_{1} \rightarrow \frac{1 + \alpha_{\text{kick}} e^{-\beta_{\text{kick}}\varphi_{3}}}{1 + \alpha_{\text{kick}}} F_{1} \qquad F_{2} \rightarrow \frac{1 + \alpha_{\text{kick}} e^{-\beta_{\text{kick}}\varphi_{3}}}{1 + \alpha_{\text{kick}}} F_{2}$$

$$v \rightarrow \exp\left[-\beta_{\text{dip}}^{2} \left((\varphi_{3} - 1)^{2} - 1\right)\right] v$$
3 parameters: $\alpha_{\text{kick}}, \beta_{\text{kick}}, \beta_{\text{dip}}$

Shape of reheating potential

Numerical evolution of NECV & reheating sectors

Summary

- Feedback mechanism $\Lambda_{eff} \rightarrow + 0$ is stable under radiative corrections!
- The standard Friedmann eq. recovered @ low E
- The linearized Einstein eq. recovered @ low E
- However, realistic cosmology requires reheating.
- A proof-of-concept model of reheating that does not spoil the small $\Lambda_{\rm eff}$ that was achieved by the feedback mechanism.
- The model consists of (i) a NEC violating field with a periodic field space, and (ii) a reheating field.
- The model is stable under both homogeneous and inhomogeneous perturbations.

Future work

- How robust is the reheating mechanism? If the NECV sector couples to a sufficiently complex system including SM and if NECV sufficiently quickly turns off, then it is expected that the universe is anyway reheated. Can we show this more quantitatively?
- Can we perform numerical evolution with a large hierarchy?
- Can the reheating field (or/and the NECV field) be the inflaton?
- Any link to fundamental theories?
- Variant modes?

• • • •

Thank you very much!

Paul Martens

Ryo Namba

Ref. 2205.11754 with Paul Martens & Ryo Namba

Also hep-th/0306108 with Lisa Randall hep-th/0306208