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classical!
At its core, general relativity is a theory for rulers and clocks.

[2] Achim Kempf - Foundations of Physics volume 48, pages1191-1203 (2018)
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[2] Achim Kempf - Foundations of Physics volume 48, pages1191-1203 (2018)
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Wightman function locally behaves as
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We can then write Synge's function in terms of the Wightman function:
1 1

o(x,x') ~

82 W (x, x')

Then, the spacetime metric can be written in terms of the correlation
function of the quantum field:

1 o0 O
: —1 /
X) = — lim W™ (x,X).
Gur(X) ' —x 12 Jxt Oxv" % X)
This can be used to define spacetime separations in

scales where QFT is valid, but general relativity is not.

[2] Achim Kempf - Foundations of Physics volume 48, pages1191-1203 (2018)
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Particle Detector Models

"From the retinas of our eyes to the solid state sensors in the LHC, we
never measure a quantum field if not by coupling something to it" ™

Particle detectors are the theoretical framework for the "something”

A Particle Detector is a:

® Localized

® Non-relativistic Quantum System

® Which couples to a Quantum Field

[4] Eduardo Martin-Martinez, T. Rick Perche, and Bruno de S. L. Torres - Phys. Rev. D 101, 045017 (2020)
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The simplest particle detector is the two-level UDW model.
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®|ts free Hamiltonian is ﬁD — Q676

® The interaction with cg(x) IS prescribed by the interaction

Hamiltonian density:
/’ spacetime smearing function

hi(x) = MA(XE(T)p(x) A(x)
\) monopole moment

eiQTé‘. + e—iQTa.— \

[4] Eduardo Martin-Martinez, T. Rick Perche, and Bruno de S. L. Torres - Phys. Rev. D 101, 045017 (2020)
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The UDW Model

It is not merely a theoretical idealization!

Appropriate choices of A(x) can mimic physical interactions?,

such as

— Light-Matter interaction.””

— Interactions of nucleons with neutrinos.”” A(x)

[5] Alejandro Pozas-Kerstjens and Eduardo Martin-Martinez - Phys. Rev. D 94, 064074 (2016)

[6] Nicholas Funai, Jorma Louko, and Eduardo Martin-Martinez - Phys. Rev. D 99, 065014 (2019)

[7] Richard Lopp and Eduardo Martin-Martinez - Phys. Rev. A 103, 013703 (2021)

[8] Bruno de S. L. Torres, T. Rick Perche, André G.S. Landulfo, and George E. A. Matsas - Phys. Rev. D 102, 093003 (2020)
[9]1 T. Rick Perche and Eduardo Martin-Martinez -Phys. Rev. D 104, 105021 (2021)
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For spacelike separated events: '

monopole moment for detector
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Spacetime Geometry from OUGHTUIL W CESULENENRTS

If detectors can recover
correlation functions,
they also can recover the
geometry of spacetime.

To probe the metric locally,
we consider a lattice of
particle detectors.

The lattice can induce a coordinate system. interaction regions



o

Using the expression for the metric in terms of the
wWightman:

L 10 0 .1,
Gy (X) = = xlflglx 82 Ozt OxV’ W= (x,x).




Using the expression for the metric in terms of the
Wightman:

L 10 0 .1,
Gy (X) = = xlflglx 82 Ozt OxV’ W= (x,x).

We can approximate the derivatives by finite distances
in the lattice:

G (Xj) =~
o ST, — ), — ) ’

—il
L
where 1, = (0,...,0,1,0,...,0).



o

Using the expression for the metric in terms of the
Wightman:

| 1 0 O 1 ,
Gy (X) = = xlflglx 82 Ozt OxV’ W= (x,x).

We can approximate the derivatives by finite distances
in the lattice:

Guv (X)) ~

PGl These are obtained from the

where 1, = (0, ..,0,1,0, ..., 0). measurements of the detectors.
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® Classical general relativity is a theory for measurements of
distances and time based on classical rulers and clocks.

® Spacetime separations in the smallest scales can be defined via
the correlation functions of quantum fields.

® These correlations can be accessed by particle detector models.
® Particle detector models can be used to accurately determine
the geometry of spacetime.

® Particle detectors can be used to define a guantum notion of
rulers and clocks.
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Einstein's equations are "violated" in the
context of QFT in curved spacetimes.

E.g.: Cylinder spacetime and Casimir force.
(Too) <0 but 1y, =0
= G 7 87 (T,)

And we would need a theory of quantum
gravity in order to write something like

)

Gy = 8T Tuv
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1 o0 0
v(X) = — lim ,W_l x,x') gives us the
The result  Guv(X) s 82 Ol OV (%, %) g

background spacetime.

Vot

So the resulting metric does not satisfy GMV — 87T<Tw/>

E.g.: In the cylinder spacetime, this prescription
would give the flat Minkowski metric.
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® Nothing here has been verified so far, but | am currently
working on it, and new results might come in 2023.

® There is potential to relate this with other relevant fields of
physics such as AdS/CFT, Holography and Causal Set Theoru.

® It might be possible to solve the cosmological constant problem
using this idea.

® These ideas might give rise a theory of quantum gravity, where
the geometry of spacetime is emergent from quantum fields.
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