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Then, the spacetime metric can be written in terms of the correlation
function of the quantum field:

This can be used to define spacetime separations in
scales where QFT is valid, but general relativity is not.

[2] Achim Kempf - Foundations of Physics volume 48, pages1191–1203 (2018)
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"From the retinas of our eyes to the solid state sensors in the LHC, we
never measure a quantum field if not by coupling something to it"

Particle detectors are the theoretical framework for the "something"

A Particle Detector is a:

Localized

Non-relativistic Quantum System
Which couples to a Quantum Field

[4]

[4] Eduardo Martín-Martínez, T. Rick Perche, and Bruno de S. L. Torres - Phys. Rev. D 101, 045017 (2020)
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monopole moment

The simplest particle detector is the two-level UDW model.
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The UDW Model

It is not merely a theoretical idealization!

Appropriate choices of            can mimic physical interactions*,
such as

Light-Matter interaction.

Interactions of nucleons with neutrinos.

[5] Alejandro Pozas-Kerstjens and Eduardo Martín-Martínez - Phys. Rev. D 94, 064074 (2016)
[6] Nicholas Funai, Jorma Louko, and Eduardo Martín-Martínez - Phys. Rev. D 99, 065014 (2019)
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If detectors can recover
correlation functions, 

they also can recover the
geometry of spacetime.

interaction regions

To probe the metric locally,
we consider a lattice of
particle detectors.

The lattice can induce a coordinate system.
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Using the expression for the metric in terms of the
Wightman:

We can approximate the derivatives by finite distances
in the lattice:

where
These are obtained from the
measurements of the detectors.
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All Examples Work When Coordinate Separation       0

Inertial Detectors in Minkowski Accelerated Detectors in Minkowski

Detectors in deSitter Spacetime Finite Sized Detectors

and others...
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Summary

Spacetime separations in the smallest scales can be defined via
the correlation functions of quantum fields.

Classical general relativity is a theory for measurements of
distances and time based on classical rulers and clocks.

These correlations can be accessed by particle detector models.

Particle detector models can be used to accurately determine
the geometry of spacetime.
Particle detectors can be used to define a quantum notion of
rulers and clocks.
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Facts

gives us the

So the resulting metric does not satisfy 

 background spacetime.

E.g.: In the cylinder spacetime, this prescription
would give the flat Minkowski metric.
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Nothing here has been verified so far, but I am currently
working on it, and new results might come in 2023.
There is potential to relate this with other relevant fields of
physics such as AdS/CFT, Holography and Causal Set Theory.

It might be possible to solve the cosmological constant problem
using this idea.

These ideas might give rise a theory of quantum gravity, where
the geometry of spacetime is emergent from quantum fields.



Thank you!Thank you!


