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Inflation and primordial perturbations
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Signals of new physics in inflation

Approaches to new physics related to inflation

« Specifying inflaton and inflation model ( Higgs, R?, axion, ...)

e Detecting new particles ( Generation, SUSY, GUT, ...)

They can be seen in non-Gaussianities

* Higher energy scale than the colliders on ground: Hins ~ O(10' GeV)

e Each models of inflation would yield different signals H/m

. e : C—)
Some characteristic signs of particles \( (C60) x W

( Cosmological Collider [Maldacena, 2015] )

e.g. Mass of particles ’,'O e + log(k)
Wavelength of oscillatory signal /¢ sq"'u_e'ézed




Observation of non-Gaussianities

Up to 2"d order action » ( basically ) free theory, which is consistent to observation
Higher than 39 order action » interaction terms, not yet sufficiently observed

» Non-Gaussianities <CCC> ; <CCCC> yoe

Three point correlation function ( Bispectrum ):

Effects of interactions between k1, ko, k3 ( not scale invariant )
‘ Model dependent functions of k

Observables:
Amplitude fnr, ( theory: fn1, ~ ©(0.1), observation: fn1, ~ O(1))
Dimensionless shape function F (k3 /k1, k2 /k1)

Specific regions in k1, ko, k3 : Squeezed limit k3 < k1 =~ ko
( Model dependence are in k3 /kq axis )



Bosonic signals in non-Gaussianities

Observation prefers to single field slow-roll inflation.
» Effects of other fields must be small.

e.g. Quasi-single inflation [Chen, 2009]
Inflaton ¢ + heavy scalar o ( ms ~ H > my )

» o has no effect to inflationary background dynamics.

Leading bispectrum: (k3/k1)*, fxL S O(1) (u= \/(%)2 —i )

Other works: gauge boson [wang, 2020], graviton [Tong, 2022], etc.

They all would produce oscillatory signals.

Few works for fermionic fields ( mainly technical reasons )

despite the importance of fermion in both SM and BSM.

log(K)



Fermionic interactions

Allowed setting:
De Sitter: shift symmetric scalar field potential V(¢ + ¢) = V()

# Slow roll: shift symmetric terms + small breaking terms in interactions

Fermionic interactions: / Previous research [Chen, 2018]

: : - 1
* Shift symmetric terms: [%amwuw] FD@W’”'

Unrenormalizable interactions ( EFT, SUGRA, ...)
Leading mmp 9, ¢potyp (dim 5)

Our work
- Breaking terms: |y¢vi) W -

Leading and renormalizable # Yukawa coupling




[Chen, 2018]

Previous research: derivative coupling

Action:
R
S = [ day=g[5 - 30u00"0 - V()

_ 1 1 _
+ 00" Dyt = Smlu + hie) — 2 0,000"Y |

Correction in 2" order action: —)\ya%y, )= %
T I I " g ) ks \
1t order of slow roll: A = Const. N

Approx. of loop integral: Extracting oscillatory signals +>"- &
(IR modes |k7| < 1 of the loop ) /’,



[Chen, 2018]

Physical interpretation of A

Considering the effects to energy:

Hamiltonian density of matter: H = ngqb + W@bl& — L

1 —_
Coupling Kau¢¢0”¢ changes the Hamiltonian:

H— H=H—\O, Q = 15”1 : Charge density

e.g. A>0 5
A ( more particles ) ‘ H d ( more stable state )

A: chemical potential (H=Hy— uN)

The value Is bounded by unitarity bound:

A> /|6 mmp )< (4n2P;)"YAH ~ 60H



[Chen, 2018]

Observational signals

Result:
Pg
— (27)% D(m
<C1C2C3> ( 7T) (klkgkg)QRe ( 7/\)(
W | h
avelength: r/mZ A2

Amplitude: X7 S O(0.1)

A< (4r2P)~YAH ~ 60H
Current observation: fxr. ~ O(1)

Future observation: fxr ~ O(1072)
(21 cm line)
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Yukawa coupling

Action:
R
g / d'ey g - %amaﬂqﬁ —V(¢)

+ it D ap — %m(ww + h.c.) — yo(yyp + h.c.)

Mass correction: m — m + 2yog

Fme-dependentmassntt) &

De Sitter approx.: m = Const. \
Approx. of loop integral: Extracting oscillatory signals

( Following previous work ) ,f’



Observational signals

Result:
P2
2 3
(¢1¢aGs) = (2m)* (klekg)zRe Y
H
Wavelength:
T 20m +2960)

Longer than derivative case

Amplitude: fR3° < 0(0.1)
y<l,¢Z H

Same order as derivative case
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Distinguishing these signals

Observable: amplitude and wavelength of the bispectrum
Yukawa: Positive mass shift y¢g suppress particle production
Large amplitude ‘ small m, ¢o, neither large nor small y(~ 0.1)

Wavelength is large in large amplitude.

2(m + 2y¢o)

Derivative: Chemical potential ( promote particle production )

Large amplitude ‘ small m, large A
H

2v/m?2 + \2

Wavelength is small in large amplitude.

» Wavelength is different in large amplitude signals



H

wavelength

Distinguishing these signals ( figures )

Derivative coupling Yukawa coupling
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Ongoing works

Generally both interactions are in action.
Both mass shift and chemical potential exist in mode functions.

» Parameter regions are overlapped.
H

24/ (m + 2ydo)2 + A2
Large amplitude in large A ( i.e. short wavelength )

Same wavelength:

Wavelength does not extract physical essence of the interactions

What is the most crucial difference between these interactions?
( More generally, how to know interactions from oscillatory signals? )
Our strategy: UV behavior ( expected: logarithmic v.s. quadratic )

How about supersymmetric theory? Quadratic divs. are canceled?



Summary

Cosmological perturbations
are explained well by linear order inflationary perturbations.

would have rich information of new physics in higher order correlations.

Fermionic signals in non-Gaussianities have similar behavior.
The case either Yukawa or derivative coupling
» Distinguishable by wavelength of signals

The case both interactions exist
» Not distinguishable by wavelength in IR approx.

» ( our ongoing work ) UV behavior differs?
» New physics ( e.g. supersymmetric theory )
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