

Scattering amplitudes (not only for cosmologists)

Jaroslav Trnka

Center for Quantum Mathematics and Physics,
University of California, Davis \mathcal{E} IPNP, Charles University in Prague

CAS-JSPS, December 2022

Plan

\% Motivation to study scattering amplitudes (history)
\because New methods: amplitudes and geometry
\% Amplitudes in EFTs (potentially relevant for cosmology)

Hidden simplicity in scattering amplitudes

Holy grail of theoretical physics

What are the Fundamental Laws of Nature?

What are the elementary physical forces?

Why is the Universe big?

What is the theory of everything?

Probing fundamental laws

Standard model of elementary particles
Higgs discovery 2012

What is the menu of elementary particles?

How do they interact?

Search for new physics

Beyond Standard model

Higgs potential, proton decay,
WIMPs, search for SUSY, neutrino mass, anomalies,...

LHC, Fermilab, future colliders

neutrino experiments

Theorist's perspective

\% Theoretical framework to describe physical systems
\% Compatible with two principles

Special relativity

Quantum mechanics

$$
H(t)|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

Quantum Field Theory (QFT)

Quantum Field Theory

Dirac, Feynman, Dyson, Schwinger (1926-1950s)
\% Elementary particles described by fields, their interactions (physical forces) by Lagrangian.
: Example: Quantum Electrodynamics - QFT for EM

$$
\qquad \mathcal{L}=q \cdot \psi \psi A
$$

We associate a picture

Quantum Field Theory

\% Use QFT to predict outcomes of particle experiments

Quantum Field Theory

\% Use QFT to predict outcomes of particle experiments

$$
A(e e \rightarrow e e)
$$

Function of energies and angles of particles
scattering process

Quantum Field Theory

\% Use QFT to predict outcomes of particle experiments

$$
A(e e \rightarrow e e \gamma)
$$

Function of energies and angles of particles
scattering process

Quantum Field Theory

\% Use QFT to predict outcomes of particle experiments

probability: square of amplitude

$$
p_{i} \sim|A|^{2}
$$

Unitarity: some of probabilities

$$
\sum_{i} p_{i}=1
$$

Quantum Field Theory

\because Use QFT to predict outcomes of particle experiments

Perturbative QFT

Feynman, Dyson, Schwinger (1940s-1950s)

\% Expansion of the amplitude for small q : weak coupling

$$
A(e e \rightarrow e e)=1+q^{2} \cdot A_{0}+q^{4} \cdot A_{1}+q^{6} \cdot A_{2}+\ldots
$$

Feynman diagrams

$$
\binom{\text { Expansion of the path integral }}{Z=\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A e^{i S}}
$$

Perturbative OFT

Feynman, Dyson, Schwinger (1940s-1950s)

$\%$ Expansion of the amplitude for small q : weak coupling

$$
A(e e \rightarrow e e)=1+q^{2} \cdot A_{0}+q^{4} \cdot A_{1}+q^{6} \cdot A_{2}+\ldots
$$

Feynman diagrams

Loop expansion
$\binom{$ Expansion of the path integral }{$Z=\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A e^{i S}}$

Quantum Field Theory

\because Simple diagrammatics: draw all Feynman diagrams
\because Each diagram: contribution to amplitude gluing these pictures

Feynman rules: prescription how to convert diagram into formula

Great success of QFT

\% QFT has passed countless tests in last 70 years
\% Example: Magnetic dipole moment of electron
Theory: $\quad g_{e}=2$
1928
Experiment: $\quad g_{e} \sim 2$

Great success of QFT

\% QFT has passed countless tests in last 70 years
\% Example: Magnetic dipole moment of electron
Theory: $g_{e}=2.00232$
1947
Experiment: $g_{e}=2.0023$

Great success of QFT

\because QFT has passed countless tests in last 70 years
\% Example: Magnetic dipole moment of electron

$$
1957 \text { Theory: } g_{e}=2.0023193
$$

1972 Experiment: $g_{e}=2.00231931$

Great success of QFT

\because QFT has passed countless tests in last 70 years
\% Example: Magnetic dipole moment of electron
Theory: $\quad g_{e}=2.0023193044$
1990
Experiment: $\quad g_{e}=2.00231930438$

Problems with gravity

More conceptual problem: tension between QFT and gravity
QFT: local observables - interactions happen at a point, gravity forbids them - what is quantum gravity?

Our best attempt: string theory

concept: consistent unification of QFT and gravity

AdS/CFT correspondence:
QFT is "dual" to string theory
strongly coupled, weakly coupled, no gravity with gravity

QFT picture incomplete

Despite all successes our understanding of QFT is incomplete

If there is a new formulation of QFT, we should see footprint in the weak coupling regime: structure of scattering amplitudes

QCD background and new physics

\% Distinguish new physics from Standard model

- Accurate theoretical predictions of background needed
\% Colliders: protons at high energies
- Main component is scattering of gluons
\% Standard procedure: Feynman diagrams

Status of the art: early 1980s

\because Most complicated process: $g g \rightarrow g g g$ at leading order

Brute force calculation
24 pages of result

\% Perhaps not every question has a simple answer.....

New collider

\because 1983: Superconducting Super Collider approved
\because Energy 40 TeV : many gluons!

\because Demand for calculations, next on the list: $g g \rightarrow g g g g$

Hidden simplicity in scattering amplitudes

\because Process $g g \rightarrow g g g g$
$\because 220$ Feynman diagrams, ~ 100 pages of calculations
\because Paper with 14 pages of result

Hidden simplicity in scattering amplitudes

\because Process $g g \rightarrow g g g g$
$\therefore 220$ Feynman diagrams, ~ 100 pages of calculations

Hidden simplicity in scattering amplitudes


```
Our result has suctesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain simple anslytic form for the answer, makimg our result not only an experimentalist"s, but also a theorist's delight.
```


Hidden simplicity in scattering amplitudes


```
Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthernore, we hope to obtain osimple anslytic form for the answer, naking our result not only an experinentalist's, but also a theorist's delight.
```

\because Within a year they realized

$$
\left|A_{6}\right|^{2} \sim \frac{\left(p_{1} \cdot p_{2}\right)^{3}}{\left(p_{2} \cdot p_{3}\right)\left(p_{3} \cdot p_{4}\right)\left(p_{4} \cdot p_{5}\right)\left(p_{5} \cdot p_{6}\right)\left(p_{6} \cdot p_{1}\right)}
$$

\because Final result is much simpler than individual diagrams!

Change of strategy

What is the scattering amplitude?

Feynman diagrams

Unique object fixed by physical properties

The Analytic
S-Matrix
R.J.EDEN
P.V.LANDSHOFF P.V.LANDSHO
DI.OLIVE

Was not successful
(1960s)
Modern methods use both: • Calculate the amplitude directly

- Use perturbation theory

Life without Feynman diagrams

\% New efficient methods of calculations

- Unitarity methods

BlackHat collaboration QCD background for LHC

Bern, Dixon, Kosower (1990s)

- Recursion relations

Britto, Cachazo, Feng, Witten (2005)
Cohen, Elvang, Kiermaier (2010)
Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka (2010)

Cheung, Kampf, Novotny, Shen, Trnka (2015)

Build amplitude recursively from simpler amplitudes

$$
g g \rightarrow 4 g \quad g g \rightarrow 5 g \quad g g \rightarrow 6 g
$$

$$
\text { Feynman diagrams } 220 \quad 2485 \quad 34300
$$

Terms in recursion
3
6

Breadth of Amplitudes field

Very broad field, many (often orthogonal) research interests
S-matrix is a tool to study many different things
\therefore New efficient methods to calculate higher-loop amplitudes, numerics, special functions
\% Use amplitudes as a tool to probe QFT (new principles, symmetries, unexpected connections, integrability)
$\%$ Applications of methods to other fields: gravitational waves, study of cosmological correlators

Amplitudes conferences

\% Many meetings, conferences and workshops
\% Annual Amplitudes conference

- 2009 Durham
- 2010 London
- 2011 Michigan
- 2012 Hamburg
- 2013 Munich
- 2014 Paris
- 2015 Zurich
- 2016 Stockholm
- 2017 Edinburgh
- 2019 Dublin
- 2020 Michigan
- 2021 Copenhagen
- 2022 Prague
 Giregory $\begin{aligned} & \text { Lorchemsk } \\ & \text { Lorenzo Magnea (To }\end{aligned}$)

Geometric picture for scattering amplitudes

with Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Henn, Herrmann,
Postnikov, Thomas and many others

Amplitude as a volume

In 2009 Hodges studied recursion relations for gluon amplitudes
He wanted to use twistor variables introduced by Penrose in 1970s in his own attempt for quantum gravity

For particular six-gluon amplitude at tree-level he took the result

Amplitude as a volume

In 2009 Hodges studied recursion relations for gluon amplitudes
He wanted to use twistor variables introduced by Penrose in 1970s in his own attempt for quantum gravity

For particular six-gluon amplitude at tree-level he took the result and rewrote using momentum twistor variables

$$
A_{6}=\frac{\langle 1345\rangle^{3}}{\langle 1245\rangle\langle 2345\rangle\langle 1234\rangle\langle 1235\rangle}-\frac{\langle 1356\rangle^{3}}{\langle 1256\rangle\langle 6123\rangle\langle 2356\rangle\langle 1235\rangle}
$$

And the expressions look familiar to him

Amplitude as a volume

They are volumes of tetrahedra in momentum twistor space!

$$
\frac{\langle 1345\rangle^{3}}{\langle 1245\rangle\langle 2345\rangle\langle 1234\rangle\langle 1235\rangle}
$$

$-\quad \frac{\langle 1356\rangle^{3}}{\langle 1256\rangle\langle 6123\rangle\langle 2356\rangle\langle 1235\rangle}$

Amplitude as a volume

They are volumes of tetrahedra in momentum twistor space!

$$
\frac{\langle 1345\rangle^{3}}{\langle 1245\rangle\langle 2345\rangle\langle 1234\rangle\langle 1235\rangle} \quad-\quad \frac{\langle 1356\rangle^{3}}{\langle 1256\rangle\langle 6123\rangle\langle 2356\rangle\langle 1235\rangle}
$$

These two pieces subtract, we are triangulating polyhedron

Amplitude as a volume

They are volumes of tetrahedra in momentum twistor space!

$$
\frac{\langle 1345\rangle^{3}}{\langle 1245\rangle\langle 2345\rangle\langle 1234\rangle\langle 1235\rangle} \quad-\quad \frac{\langle 1356\rangle^{3}}{\langle 1256\rangle\langle 6123\rangle\langle 2356\rangle\langle 1235\rangle}
$$

Amplitude is a volume of polyhedron!

Amplitude as a volume

There is some triangulation in terms 220 pieces $=$ Feynman diagrams

This was true for a simplest six-gluon amplitude, but did not seem to work for all tree-level amplitudes, neither loops.

We need "bigger space" to fit all amplitudes there.

On-shell diagrams and Positive Grassmannian

Around the same time: plabic graphs

- represent permutations
- correspond to positive matrices

Postnikov, Goncharov (2005-2010)

On-shell diagrams and Positive Grassmannian

Around the same time: plabic graphs

- represent permutations
- correspond to positive matrices

Postnikov, Goncharov (2005-2010)

$$
\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & *
\end{array}\right) \leftrightarrow \text { ? }
$$

Same graphs appear in amplitudes - on-shell diagrams Terms in recursion relations, "cuts" of loop amplitudes

arnerc1212.560s (pdif, other)

Scattering Amplitudes and the Positive Grassmannian
Nima Arkani-Hamed, Jacob L. Bourjaily, Freddy Cachazo, Alexander B. Goncharov, Alexander Postnikev, Jaroslary Trnka
Comments: a hundfal of minor corrections and crations added/updated, 158 pagen, 254 figues

On-shell diagrams and Positive Grassmannian

Around the same time: plabic graphs

- represent permutations
- correspond to positive matrices

Postnikov, Goncharov (2005-2010)

$$
\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & *
\end{array}\right) \leftrightarrow
$$

Same graphs appear in amplitudes - on-shell diagra Terms in recursion relations, "cuts" of loop amplitud

On-shell diagrams and Positive Grassmannian

Very efficient way to calculate (tree-level) amplitudes

Shift-enter in
Matematica gives the formula

In[1]:- <<positroids.m
Dat[1]:-

Grassmannian Positroids, Plabic Graphs, \& Scattering Amplitudes in $N=4$ SYM Jacob L. Boerjaily, 2012

On-shell diagrams and Positive Grassmannian

Very efficient way to calculate (tree-level) amplitudes

Shift-enter in
Matematica
gives the
formula

Grassmannian Positroids, Plabic Graphs, \& Scattering Amplitudes in $N=4$ SYM

What is the scattering amplitude as a single object?

The Amplituhedron

Hodges' observation was not accidental
Special cases the amplitudes correspond to polyhedra, but the general space is the Amplituhedron

Seven-gluon scattering at tree-level

The Amplituhedron

Hodges' observation was not accidental
Special cases the amplitudes correspond to polyhedra, but the general space is the Amplituhedron
Higher-point amplitudes, loops
Multi-dimensional "curvy" spaces

Gluon amplitudes are volumes of the Amplituhedron

The Amplituhedron

Arkani-Hamed, Trnka (2013), Arkani-Hamed, Thomas, Trnka (2017)
Toy example: polygon in the plane - points Z kinematical data

The polygon is a proxy for the Amplituhedron

The Amplituhedron

Arkani-Hamed, Trnka (2013), Arkani-Hamed, Thomas, Trnka (2017)
Toy example: polygon in the plane - points Z kinematical data

The Amplituhedron

Toy example: polygon in the plane - points Z kinematical data

The polygon is a proxy for the Amplituhedron

Other triangulations correspond to Feynman diagrams

The reference point Z_{*} is related to the gauge choice
Invariant definition of the "amplitude": area of the polygon

The Amplituhedron

Arkani-Hamed, Trnka (2013), Arkani-Hamed, Thomas, Trnka (2017)
Full definition of the Amplituhedron:

geometry labeled by n, k, ℓ geometric region specified by a set of inequalities

differential volume form on this space: tree-level amplitudes and loop integrands
tree-level = QCD
loops $=$ simpler in planar maximally supersymmetric Yang-Mills theory
n number of particles $\quad \ell$ number of loops $\quad k$ helicity number

What is scattering amplitude?

What is scattering amplitude?

Fantasy

Classical determinism Newton's
equations

Fantasy

Classical determinism

Determinism not manifest

Fantasy

Determinism gone Probabilities

Classical determinism

Fantasy

Fantasy

No locality
Locality manifest

Fantasy

No locality

Locality not manifest

Fantasy

No locality

Locality not manifest

Amplitudes in effective field theories

with Kampf, Novotny, Cheung, Shen, Shifman, Bartsch and others

Amplitudes in EFT

\because Tree-level amplitudes of massless particles in EFTs
\% Not considered: bad powercounting, problems with loops, on the opposite side to the spectrum of interesting theories than $\mathrm{N}=4$ SYM theory
\% Standard procedure: Lagrangian
\downarrow
Symmetry
Properties of amplitudes

Amplitudes in EFT

* Here we consider a completely different perspective
- Start with generic Lagrangian with free couplings
= free parameters in the amplitude
- Impose kinematical constraints on scattering amplitudes: fix all parameters - find unique theory
\therefore Classify interesting EFTs, perhaps find some new ones
\because It is easier to impose kinematical constraints on amplitudes than to search in space of all symmetries

On-shell amplitudes

\because Massless scalars in D-dimensions
\because On-shell amplitudes $p^{2}=0$
\% Tree-level, no renormalization
\because Low energies: derivative expansion

Three point interactions

\% Consider a single scalar field theory given by

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+\mathcal{L}_{\text {int }}(\phi, \partial \phi, \ldots)
$$

\because Simplest interaction is 3pt but there are no 3pt amplitudes except for $\mathcal{L}_{i n t}=\lambda \phi^{3}$
\because Any derivatively coupled term can be written as

$$
\mathcal{L}_{i n t}=(\square \phi)(\ldots) \text { and removed by EOM }
$$

Fundamental interaction

$\%$ Let us start with a 4 pt interaction term

$$
\mathcal{L}_{\text {int }}=\lambda_{4}\left(\partial^{m} \phi^{4}\right) \longrightarrow \text { many terms }
$$

\because Four point amplitude: special kinematics
\because Six point amplitude: presence of contact terms

$$
\frac{\partial^{m} \partial^{m}}{\partial^{2}}=\partial^{2 m-2} \rightarrow\left\langle\ll \quad \begin{array}{l}
\text { Powercounting } \\
\mathcal{L}_{6}=\partial^{2 m-2} \phi^{6}
\end{array}\right.
$$

\because For $\mathcal{L}_{\text {int }}=\lambda_{4} \phi^{4}$ no contact terms possible

Infinite tower

\% We consider the infinite tower of terms

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+\lambda_{4}\left(\partial^{m} \phi^{4}\right)+\lambda_{6}\left(\partial^{2 m-4} \phi^{6}\right)+\ldots
$$

\% Even if we start with the 4 pt term we can do field redefinitions and generate infinite tower
\because We get a generic amplitude $A_{n}\left(\lambda_{4}, \lambda_{6}, \ldots\right)$
\% Find constraints which uniquely specifies all couplings

On-shell constructibility

\because On the pole the amplitude must factorize

\because Contact terms vanish on all poles: not detectable
\% Therefore, EFT amplitudes are not specified only by factorization - unfixed kinematical terms

$$
\frac{s_{12} s_{56}}{s_{123}} \sim \frac{\left(s_{12}+s_{123}\right) s_{56}}{s_{123}} \text { on the pole }
$$

On-shell constructibility

\because Naively, this problem arises also in YM theory
\because In fact, the contact terms there is completely fixed

Imposing gauge invariance fixes it
\% In our case, contact terms are unfixed with free parameters, there is no gauge invariance

Extra constraints

\because If we want to fix the amplitude completely we have to impose additional constraints!
\% It must link the contact terms to factorization terms

None of them individually satisfy condition X
\because Natural condition for EFTs at low energies
Soft limit $\quad p \rightarrow 0$

Single scalar

$\%$ The first non-trivial is the original example

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+c_{4}(\partial \phi)^{4}+c_{6}(\partial \phi)^{6}+c_{8}(\partial \phi)^{8}+\ldots
$$

\because Calculate 6pt amplitude

$$
\left.A_{6}=\sum_{\sigma} 2\right\rangle_{1}^{3} \quad\left\langle_{6}^{4} 5 r_{1}^{3}\right\rangle_{6}^{4} 5
$$

$$
s_{i j}=\left(p_{i}+p_{j}\right)^{2}
$$

$=4 \sum_{\sigma} c_{4}^{2} \frac{\left(s_{12} s_{23}+s_{23} s_{13}+s_{12} s_{13}\right)\left(s_{45} s_{56}+s_{45} s_{46}+s_{46} s_{56}\right)}{s_{123}}+c_{6} s_{12} s_{34} s_{56}$ trivial soft-limit vanishing $p_{i} \rightarrow 0 \leftrightarrow \leftrightarrow$ Lagrangian trivially invariant

$$
\phi \rightarrow \phi+a
$$

Single scalar

$\%$ The first non-trivial is the original example

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+c_{4}(\partial \phi)^{4}+c_{6}(\partial \phi)^{6}+c_{8}(\partial \phi)^{8}+\ldots
$$

\because Calculate 6pt amplitude

$$
A_{6}=\sum_{\sigma} 2 \prod_{1}^{3} \quad\left\langle_{6}^{4} 12\right\rangle_{6}^{4} 5
$$

$$
\begin{array}{cc}
=4 \sum_{\sigma} c_{4}^{2} \frac{\left(s_{12} s_{23}+s_{23} s_{13}+s_{12} s_{13}\right)\left(s_{45} s_{56}+s_{45} s_{46}+s_{46} s_{56}\right)}{s_{123}}+c_{6} s_{12} s_{34} s_{56} \\
\text { Impose quadratic } & A_{6} \rightarrow \mathcal{O}\left(t^{2}\right) \\
\text { vanishing } &
\end{array}
$$

Single scalar

$\%$ The first non-trivial is the original example

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+c_{4}(\partial \phi)^{4}+c_{6}(\partial \phi)^{6}+c_{8}(\partial \phi)^{8}+\ldots
$$

\therefore Calculate 6pt amplitude

$$
A_{6}=\sum_{\sigma} 2 \prod_{1}^{3} \quad\left\langle_{6}^{4} 12\right\rangle_{6}^{4} 5
$$

$=4 \sum_{\sigma} c_{4}^{2} \frac{\left(s_{12} s_{23}+s_{23} s_{13}+s_{12} s_{13}\right)\left(s_{45} s_{56}+s_{45} s_{46}+s_{46} s_{56}\right)}{s_{123}}+c_{6} s_{12} s_{34} s_{56}$
There is a single solution and it fixes: $c_{6}=4 c_{4}^{2}$

Single scalar

$\%$ The first non-trivial is the original example

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+c_{4}(\partial \phi)^{4}+c_{6}(\partial \phi)^{6}+c_{8}(\partial \phi)^{8}+\ldots
$$

\because Apply to higher point amplitudes $\quad(\partial \phi)^{2 n}=\left[\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)\right]^{n}$ $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$
\% Cancelations between diagrams required, a unique solutions exists and relates $c_{2 n} \sim c_{4}^{\#}$

Single scalar

\% The Lagrangian becomes

$$
\mathcal{L}=-\frac{1}{g} \sqrt{1-g(\partial \phi)^{2}} \quad \text { where } \quad g=8 c_{4}
$$

\because Apply to higher point amplitudes

$$
\begin{aligned}
A_{n}=\mathcal{O}\left(t^{2}\right) \quad \text { for } \quad \begin{aligned}
p_{i} & \rightarrow t p_{i} \\
t & \rightarrow 0
\end{aligned}, ~
\end{aligned}
$$

\% Cancelations between diagrams required, a unique solutions exists and relates $c_{2 n} \sim c_{4}^{\#}$

Result: DBI action

* The Lagrangian becomes

$$
\mathcal{L}=-\frac{1}{g} \sqrt{1-g(\partial \phi)^{2}} \quad \text { where } \quad g=8 c_{4}
$$

\% It describes the fluctuation of D-dimensional brane in ($\mathrm{D}+1$) dimensions
\because What is the symmetry principle behind this?

Result: DBI action

\because Symmetry of the action: $(\mathrm{D}+1)$ Lorentz symmetry

$$
\phi \rightarrow \phi+(b \cdot x)+(b \cdot \phi \partial \phi)
$$

\therefore It can be shown that this implies the soft limit behavior
\because But we can also derive the action based on the soft limit

$$
\begin{aligned}
2 \mathcal{L}^{\prime}(X) / g=2 X \mathcal{L}^{\prime}(X)-\mathcal{L}(X) & \rightarrow \quad \mathcal{L}(X) \sim \sqrt{1-g X} \\
\text { where } X & =(\partial \phi)^{2}
\end{aligned}
$$

Next case

\because Let us consider the next Lagrangian

$$
\mathcal{L}_{2}=\frac{1}{2}(\partial \phi)^{2}+\lambda_{4}\left(\partial^{6} \phi^{4}\right)+\lambda_{6}\left(\partial^{10} \phi^{6}\right)+\ldots
$$

Calculate amplitudes: impose again $A_{n}=\mathcal{O}\left(t^{2}\right)$

Galileon

\because Let us consider the next Lagrangian

$$
\mathcal{L}_{2}=\frac{1}{2}(\partial \phi)^{2}+\lambda_{4}\left(\partial^{6} \phi^{4}\right)+\lambda_{6}\left(\partial^{10} \phi^{6}\right)+\ldots
$$

Calculate amplitudes: impose again $A_{n}=\mathcal{O}\left(t^{2}\right)$

Fully specifies a family of solutions
Galilean symmetry $\quad \phi \rightarrow \phi+a+(b \cdot x)$

Galileons
Relevant for cosmological models
\because There are (d-2) Lagrangians:

$$
\mathcal{L}_{n}=\phi \operatorname{det}\left[\partial^{\mu_{j}} \partial_{\nu_{k}} \phi\right]_{j, k=1}^{n} \quad n \leq d
$$

Special Galileon

\% Not enough for us: not minimal, not unique
\% We impose even stronger condition

$$
A_{n}=\mathcal{O}\left(t^{3}\right) \quad \text { for } \quad \begin{aligned}
p_{i} & \rightarrow t p_{i} \\
t & \rightarrow 0
\end{aligned}
$$

\% And there exists an unique solution, linear combination of Galileon Lagrangians: we called it special Galileon

Effective Field Theories from Soft Limits
Clifford Cheung, Karol Kampf, Jiri Novotrry, Jaroslave Trnka Gobemined on 12 Oec 201 en

A Hidden Symmetry of the Galileon

Kurt Ainterbichler, Austin Joyce

Sobemed on 29,4e 20:5)

$$
\phi \rightarrow s_{\mu \nu} x^{\mu} x^{\nu}+\frac{\lambda_{4}}{12} s^{\mu \nu}\left(\partial_{\mu} \phi\right)\left(\partial_{\nu} \phi\right)
$$

Classification

\% Use soft-limit as classification tool
(Cheung, Kampf, Novotny, Shen, JT 2016)
(Elvang, Hadjiantonis, Jones, Paranjape 2018)
\because Extension to vector fields: Born-Infeld theory
(Cheung, Kampf, Novotny, Shen, JT 2018)

$$
\mathcal{L}=\sqrt{(-1)^{D-1} \operatorname{det}\left(\eta_{\mu \nu}+F_{\mu \nu}\right)}
$$

\because Non-trivial soft theorems
(Kampf, Novotny, Shifman, JT 2019)
\% Close connection to color-kinematics duality, worldsheet integrals (scattering equations)

Conclusion

Summary

\because Amplitudes: probe to learn new things about QFTs
\because Many different research directions, I mentioned some of them, but different people care about different things
\because Amplituhedron \& positive geometry: completely new approach (physics -> math), only special theories now
\% Recent connections to cosmology: EFTs for inflation, calculation of cosmological correlators (related to S-matrix)

Thank you for your attention

